03 Jun 2008: Report

DNA Technology:
Discovering New Species

By taking bits of a single gene, scientists are using DNA barcoding to identify new species. If a portable hand-held scanning device can be developed, one ecologist says, it could “do for biodiversity what the printing press did for literacy.”

by jon r. luoma

“We just found two more!” said tropical ecologist Dan Janzen. Although the telephone connection with him was shaky, his excitement was palpable. “The first butterfly two months ago, the other just two weeks ago.”

We had reached Janzen in January at the Area de Conservacion Guanacaste, a tropical forest preserve he helped create in northwestern Costa Rica, where Janzen does much of his widely lauded biodiversity research. (Among other honors, he has been awarded the John D. and Catherine T. MacArthur Foundation’s “genius” grant.) The “two more” were newly identified species of butterfly, both luminescent blue “skippers.”

Discovery of new species is reason enough for a biologist’s enthusiasm. But Janzen clearly was jazzed by something he sees as far more momentous — a technology called DNA barcoding that made these discoveries possible in the first place, and that promises to revolutionize the otherwise daunting process of identifying the millions of species on the planet, many yet unknown and unnamed.

The term “barcoding” is actually an analogy. Much the same way that a small universal product barcode allows a retailer’s scanners to distinguish a box of tissues from a can of green beans, DNA barcoding technology allows scientists to use data from a tiny snippet of a single gene to distinguish one species from the next. Although not perfect, proponents say it is highly accurate in distinguishing almost all species of animals, with a promising variation under development for plants. At a few dollars per species it is also remarkably cheap and, compared to traditional DNA analysis, lightning fast.

Eventually, it might even be possible to embed the technology into an inexpensive handheld device. When that happens, Janzen says, “it will do for biodiversity what the printing press did for literacy.” He envisions a gadget straight out of Star Trek, an electronic reader of the catalogue of life on the planet that would enable anyone — schoolteacher, farmer, curious child — to identify “what bit of biodiversity is biting them, appealing to them, worrying them” in an instant.

For now, DNA barcoding technology is limited to scientists with access to a few large labs with the right equipment. But those new butterfly species hint at the technology’s promise. The two new skipper species actually belong to a surprisingly large cluster of recently identified species that, for years, were hiding in plain sight. As recently as 2003, scientists thought that the butterflies cataloged under the name Astraptes fulgerator were all of a single species. The butterfly adults all seemed to look exactly the same, although, mysteriously, color patterns varied among their larval caterpillars. That year, Janzen, a biology professor at the University of Pennsylvania, gave tissue samples from dozens of butterflies his team had collected to geneticist Paul Hebert, of Ontario’s University of Guelph, who had developed the barcoding technology. His analysis quickly revealed not one, but what appear to be 10 distinct species.

The two new discoveries bring the total to 12, and there may even be a few more, Janzen says. Where science once saw a generalist species that occupied a wide variety of tropical habitats, DNA barcoding has uncovered an array of species that actually specialize and occupy differing habitats. Why all mimic the same color pattern remains a mystery, although it probably lends some sort of evolutionary advantage. Janzen thinks it’s likely a don’t-bother signal to would-be predators. Unusually fast fliers, skippers should lose any appeal to hungry birds that would learn as youngsters not to waste energy on hot pursuit of the hard-to-catch.

Beyond the arena of species discovery, the technology is rapidly finding its way into an array of practical applications, from helping health agencies to control insect-borne diseases, to helping airlines and the military avoid disastrous in-flight collisions with birds, to helping regulatory agencies monitor stream and lake quality.

Hebert says that although he’d been yearning for better ways to probe biodiversity during decades of field work in places as diverse as tropical New Guinea and the Canadian Arctic, the idea of DNA barcoding quite literally came to him as an out-of-the blue inspiration. One day in the late 1990s he was in a supermarket looking at retail barcodes when it hit.

“It occurred to me that if the retail industry can use a few numbers to represent a vast array of products, why can’t we look at DNA the same way?” he says. Herbert quickly set out to determine if he could find a genetic snippet common to all species that could yield enough information to tell them apart. He needed to find a bit of DNA small enough to be sequenced quickly. And it needed to be, like a bit of DNA Goldilocks might find, “just right.” The gene had to be one that mutates quickly enough to be distinct from that of a recent evolutionary ancestor. But it also had to mutate slowly enough that barcodes would not vary markedly within a species.

Enlarge image
barcode

Photo Credit: Suz Bateson, University of Guelph
DNA barcoding revealed these look-alike blue skipper butterflies were actually two distinct species, though the pattern of their DNA compounds still had more in common with each other than with these owl species.

He found a just-right sequence on the first 648 bits of DNA of a gene called cytochrome c oxidase subunit 1 (COX1). Each long strand of DNA contains only four nucleotides: adenine, guanine, thymine, and cytosine. The complex patterns in which they are arranged determine whether your eyes are blue or brown, or whether an organism is a zebra or a zebra fish. Herbert found that by simply recording the precise order of DNA compounds, called nucleotides, on the COX1 gene, he would have a de facto barcode that would define a unique species. And it turns out that a color-coded chart of a unique A, G, T, and C sequence looks enough like a supermarket barcode to make the analogy surprisingly apt. The COX1 gene works well for animal species and at least some fungi and algae. Scientists developing barcoding technology for plants now believe that they may need to use DNA from two or three genes for accurate results.

“There was a lot of skepticism that we could deliver something that actually works,” Hebert says of the years early in this decade when he was largely frustrated in attempts to find support to pursue the technology. Some traditional taxonomists, whose core work has, since the time of Linnaeus, involved close visual comparison of species, were especially skeptical. In fact, in a few cases of hybrids and of species recently evolved from others, barcoding needs to be supported by more detailed genetic analysis or visual comparison. But it is useful in enough cases, including about 98 percent of animal species, that barcoding projects are now growing explosively.

In one major effort, the Natural History Museum in London and the Smithsonian Institution in Washington D.C. are collaborating on a project to barcode all of the world’s known mosquito species. That should lead to far better targeting of species that are vectors of malaria and other devastating diseases. The project, which began only in early 2007, has already solved a puzzle in South America. An apparent single species called Anopheles oswaldoi ranges across a wide area but, curiously, seemed to be a malaria vector only on some of its range. DNA barcoding revealed it to be four distinct species, only one of which appears to be a disease carrier. Future control programs can now focus on controlling the waterborne larvae of only the harmful species.

In May, 2007, the U.S. Food and Drug Administration used barcoding to issue a warning that a shipment of supposed monkfish from China actually appeared to be a species of toxic pufferfish. And the U.S. Air Force and the Federal Aviation Administration (FAA) have helped fund a Smithsonian sponsored barcoding of all North American bird species. On the pure discovery side, the study has given scientists new leads on deciding whether some subpopulations are their own species. But the military and FAA helped fund it for more immediately practical reasons. Scientists are now using blood and tissue samples collected from aircraft to try to better understand which birds pose collision risks and where. In terms of numbers of species barcoded so far, said Hebert in January, “We’re sitting at 35,000 species, and feeling pretty happy about that.” Today, almost all barcoding is being done at a handful of labs in North America, Herbert’s own barcoding “factory” at the University of Guelph, and a facility at the Smithsonian. But he says that if funding for the new multination International Barcode of Life (iBOL) coalition comes together, 500,000 of the world’s catalogue of species could be barcoded in another five years. That would be the first step in perfecting an iPOD-like species reader that would contain a miniature DNA sequencer along with a tiny memory chip crammed with millions of barcodes, or what Herbert calls “life on the planet in a box.”

Another technological leap is likely to help. The Guelph lab recently obtained funding from the government of Canada to purchase a pair of devices that will allow DNA analysis in huge volume at blinding speeds. Conventional equipment can now provide 96 DNA “reads” in about two hours, or about 400,000 barcode records in a year. The new device can provide those 400,000 records in a single two hour run. As the equipment comes on line, Hebert envisions a new era of “environmental barcoding” that sorts out diverse assemblages of species from big unsorted samples. Picture, he says, a kilogram of insects collected from a rainforest canopy. “We can mix them into a bug milkshake,” he says, “toss them into the hopper, and tell you in a couple of hours what the 1000 species you’ve collected are. Or we could hoover up a little bit of stream bottom, and quickly tell you what species are present.”

POSTED ON 03 Jun 2008 IN Biodiversity Science & Technology Central & South America 

COMMENTS


DNA Bar coding seems to have lot of potential to resolve species complexes and distinguish allied species. However, this new technique can't dilute the importance of classical taxonomy based on morphology as the individuals exist and have specific morphology and DNA can be extracted from fresh and to some extent not too old Preserved/ dried specimens. So in away it authenticates classical taxonomy. Advantage of Bar coding is requirement of just a part of body of the organism; while description of species requires several specimens and also both sexes.

Posted by Dr A P Singh;Chandigarh; India on 21 Jun 2010


Comments have been closed on this feature.
jon r. luomaABOUT THE AUTHOR
Jon R. Luoma, a contributing editor at Audubon, has written about environmental and science topics for The New York Times, and for such magazines as National Geographic and Discover. His third book, The Hidden Forest: Biography of an Ecosystem, has been released in a new edition by Oregon State University Press.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


Unnatural Balance: How Food
Waste Impacts World’s Wildlife

New research indicates that the food discarded in landfills and at sea is having a profound effect on wildlife populations and fisheries. But removing that food waste creates its own ecological challenges.
READ MORE

Northern Forests Emerge
As the New Global Tinderbox

Rapidly rising temperatures, changes in precipitation, and increased lightning strikes are leading to ever-larger wildfires in the northern forests of Alaska, Canada, and Siberia, with potentially severe ecological consequences.
READ MORE

Alien Islands: Why Killing Rats
Is Essential to Save Key Wildlife

Alien rats introduced by ships are decimating populations of birds and other wildlife on islands from the sub-Antarctic to California. Effective programs to eradicate the rats are underway but are encountering opposition from animal activists and some green groups.
READ MORE

Resilience: A New Conservation
Strategy for a Warming World

As climate change puts ecosystems and species at risk, conservationists are turning to a new approach: preserving those landscapes that are most likely to endure as the world warms.
READ MORE

On the Internet, Illegal Trade
In Endangered Wildlife Thrives

On eBay and elsewhere on the Internet, illegal wildlife and wildlife parts — from elephant ivory to tiger skins to monkey and crocodile skulls — are being sold. Bringing an end to this illicit activity is proving to be a daunting challenge.
READ MORE

 

MORE IN Reports


As Drought Grips South Africa,
A Conflict Over Water and Coal

by keith schneider
Facing one of the worst droughts in memory, South Africa’s leaders have doubled down on their support of the water-intensive coal industry. But clean energy advocates say the smartest move would be to back the country’s burgeoning wind and solar power sectors.
READ MORE

Saving Amphibians: The Quest
To Protect Threatened Species

by jim robbins
The decline of the world’s amphibians continues, with causes ranging from fungal diseases to warmer and drier climates. Now, researchers are looking at ways to intervene with triage measures that could help save the most vulnerable populations.
READ MORE

How Rising CO2 Levels May
Contribute to Die-Off of Bees

by lisa palmer
As they investigate the factors behind the decline of bee populations, scientists are now eyeing a new culprit — soaring levels of carbon dioxide, which alter plant physiology and significantly reduce protein in important sources of pollen.
READ MORE

Can Uber-Style Buses Help
Relieve India's Air Pollution?

by jason overdorf
India’s megacities have some the deadliest air and worst traffic congestion in the world. But Indian startups are now launching initiatives that link smart-phone apps and private shuttle buses and could help keep cars and other motorized vehicles off the roads.
READ MORE

Trouble in Paradise: A Blight
Threatens Key Hawaiian Tree

by richard schiffman
The ʻohiʻa is Hawaii’s iconic tree, a keystone species that maintains healthy watersheds and provides habitat for numerous endangered birds. But a virulent fungal disease, possibly related to a warmer, drier climate, is now felling the island’s cherished 'ohi'a forests.
READ MORE

Climate Change Adds Urgency
To Push to Save World’s Seeds

by virginia gewin
In the face of rising temperatures and worsening drought, the world’s repositories of agricultural seeds may hold the key to growing food under increasingly harsh conditions. But keeping these gene banks safe and viable is a complicated and expensive challenge.
READ MORE

As World Warms, How Do We
Decide When a Plant is Native?

by janet marinelli
The fate of a tree planted at poet Emily Dickinson's home raises questions about whether gardeners can — or should — play a role in helping plant species migrate in the face of rising temperatures and swiftly changing botanical zones.
READ MORE

With New Tools, A Focus
On Urban Methane Leaks

by judith lewis mernit
Until recently, little was known about the extent of methane leaking from urban gas distribution pipes and its impact on global warming. But recent advances in detecting this potent greenhouse gas are pushing U.S. states to begin addressing this long-neglected problem.
READ MORE

Is Climate Change Putting
World's Microbiomes at Risk?

by jim robbins
Researchers are only beginning to understand the complexities of the microbes in the earth’s soil and the role they play in fostering healthy ecosystems. Now, climate change is threatening to disrupt these microbes and the key functions they provide.
READ MORE

As Electric Cars Stall, A Move
To Greener Trucks and Buses

by cheryl katz
Low gasoline prices and continuing performance issues have slowed the growth of electric car sales. But that has not stymied progress in electrifying larger vehicles, including garbage trucks, city buses, and medium-sized trucks used by freight giants like FedEx.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“Battle
The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.

e360 SPECIAL REPORT

“Tainted
A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

OF INTEREST



Yale