16 Oct 2008: Report

What’s Killing
the Tasmanian Devil?

Scientists have been trying to identify the cause of a cancer epidemic that is wiping out Australia’s Tasmanian devils. Now new research points to an alarming conclusion: because of the species’ low genetic diversity, the cancer is contagious and is spreading from one devil to another.

by david quammen

Ever since the last lonely dodo expired on Mauritius, in the Indian Ocean, islands have taught us much of what we know about the process of extinction. Conservation biology coalesced as a discipline, during the 1970s and 1980s, from efforts to understand the special problems that threaten small populations; and small populations are most commonly found on islands and island-like patches of habitat. Now another island phenomenon is delivering stark confirmation of one of conservation biology’s cardinal precepts: that small populations, having small gene pools and little genetic diversity, face large dangers from unpredictable environmental assaults, including disease. This latest news, weird and sad, comes from Tasmania, Australia’s island state, where the Tasmanian devil (Sarcophilus harrisii) is suffering an epidemic of contagious cancer.

The devil, a marsupial carnivore native only to Tasmania, has had an up-and-down demographic history since Europeans and their livestock colonized the island.

Photo gallery
DPIW Tasmania

DPIW Tasmania
The Tasmanian devil
Perceived as inimical, like coyotes in the American West, it suffered bounty killing in the 19th century and poisoning with strychnine in the early 20th. By the time it became appreciated as an iconic element of Tasmania’s indigenous wildlife, it had passed through severe (but not precisely measurable) population bottlenecks — that is, periods of badly reduced abundance, during which devils were scarce on the landscape. Thanks to its high reproductive rate and opportunistic behavior, it had recovered nicely — at least in sheer numbers — and by the 1990s, according to one estimate, the wild population stood at about 150,000. But of course genetic diversity rebounds much more slowly than population size.

The first hint of a new kind of trouble came in 1996, when a Dutch wildlife photographer named Christo Baars noticed strange lumps on the faces of devils he photographed at a site in northeastern Tasmania. The lumps looked like boils, giant warts, or possibly . . . tumors? Baars showed his photos to Nick Mooney, a veteran wildlife officer with Tasmanian Parks and Wildlife, who had helped manage the species for decades but never seen such afflictions. Within several years, though, Mooney and others began finding similar growths on devils trapped for research purposes. One biologist, Menna Jones, euthanized three individuals from her field site on the east coast and brought them in for postmortem exams. The conclusion was provisional but alarming: All three carried malignant tumors of some inexplicable sort.

Tumors caused by what? Some experts suspected that a carcinogenic virus, passed among devils through social contact, was triggering tumor formation independently in each animal. This hypothesis might have explained the epidemiological trend that developed during the early 2000s, as the disease spread westward and southward, reducing devil populations in some areas by as much as 89 percent. But other observations needed explaining too: that the tumors were localized on faces (where devils commonly suffer bite wounds while scrapping for food and mates), and that all the tumors, from one animal to another, looked quite similar at the cellular level.

The notion of cellular similarity was dramatically supported by a study published in Nature in 2006. Based on karyograms (photos of chromosome structure), Anne-Maree Pearse and Kate Swift reported that eleven tumors from eleven different devils all showed the very same pattern of distinctive chromosome aberrations.
It’s not that evolution has made the devil tumor invisible. It’s that genetic impoverishment has made the immune system blind.
That is, the tumor cells resembled one another more closely than they resembled normal cells of the devil from which each tumor came. This seemed to refute the virus hypothesis and validate an even spookier idea—that the tumor itself is an immortal cell line, aggressive and successful, passing from devil to devil by contagion and taking root in one animal after another. To stress a point that’s so counterintuitive even biologists tend to misread it: The Pearse-Swift work showed that devil tumor has no parallel in human papilloma virus or any other cancer-triggering pathogen, in that it’s the tumor cells themselves, not some virus, that are contagious.

Contagious cancer? That’s not supposed to be possible, is it? Most of us outside the medical research profession have been led to believe, as an absolute verity, that cancer is not an infectious disease. It arises from within. It involves runaway cell replication, not infection from outside, and the cell line that’s replicating uncontrollably has originated (so we’ve been led to think) as one of the victim’s own cells, gone haywire. You can’t catch cancer from someone else, as you might catch a cold, the flu, a bacterial disease, or even a cancer-triggering virus. Isn’t that true? Well, yes, mostly. But the verity turns out to have exceptions.

One exception, well documented in the scientific literature, is something called canine transmissible venereal tumor (CTVT), a sarcoma that passes among domestic dogs as a form of venereal disease. CTVT has been traveling from dog to dog, around the world, for at least 200 years—which makes it, almost certainly, the oldest continuous lineage of mammalian cells on Earth. The other exception is this Tasmanian case, now known to those who study it as Devil Facial Tumor Disease (DFTD). Apart from CTVT and DFTD, there are no other known forms of naturally transmissible cancer among animal species, including Homo sapiens. (Laboratory experiments and surgical accidents are another matter.) The phenomenon is rare and improbable for several reasons, chief among which is that properly functioning immune systems protect individuals from colonization by foreign tumors.

Then again, bacteria and viruses and other pathogens routinely invade our bodies and cause disease, achieving temporary and sometimes terminal victory against the immune system. How can they succeed in a way that tumor cells (generally) cannot? Partly the answer is that bacteria and viruses and malarial protozoans and other pathogens are well adapted for exactly such acts of parasitism—invading a host, hiding from or resisting immune attack, proliferating within the host’s alien physiological environment—whereas tumor cells (generally) are not.

But tumors can evolve, by natural selection, much as species do. In the cancer literature, that’s known as clonal evolution, because it entails competition

Photo gallery
DPIW Tasmania

DPIW Tasmania
A Tasmanian devil with a facial tumor
and selective survival among cell lines (clones), not among organisms. Such clonal evolution can yield surprising consequences. For instance, some tumors are adapted for parasitic life and transmission between hosts. Case in point: CTVT. During its two centuries or more of existence, the canine transmissible venereal tumor seems to have acquired a liberating adaptation: It has muted (downregulated, in the scientific jargon) the protein signals (antigens) on the outside of each tumor cell, just enough to evade recognition and attack by immune-response cells. That is, it has made itself invisible to the immune systems of the dogs it enters.

The case of DFTD is different. The devil tumor is evidently much younger than the canine tumor, and its evolution hasn’t progressed so far. But downregulation of its antigens doesn’t seem to be necessary, because of a peculiarity of the Tasmanian devil: that severely low genetic diversity, a residual effect of population bottlenecks during the era of its persecution. (Another circumstance contributing to its low genetic diversity, over the longer term, may be the very fact of its containment on an island, with population levels somewhat restricted even during good times.) Low genetic diversity means that the devils are extraordinarily similar to one another, almost like an inbred lineage of laboratory mice. Such similarity can yield health problems of several sorts, one of which is an inability of the immune system to distinguish between self and nonself — or, in this case, between me-devil and you-devil. That inability offers a vast opportunity for the tumor, which leaps from one devil to another without provoking immune response. And here’s where DFTD differs from CTVT. It’s not that evolution has made the devil tumor invisible. It’s that genetic impoverishment has made the immune system blind—at least, blind to the distinction between one devil and another.

This was all suppositional until a year ago, when a new study of the devil genome confirmed it. Hannah V. Siddle, of the University of Sydney, and her collaborators used several genotyping methods on tumor and blood samples from a number of devils to look for diversity within the major histocompatibility complex (MHC). The MHC is the group of genes that create proteins responsible for immune-system discrimination between self and nonself. The Siddle paper, published last year in the Proceedings of the National Academy of Sciences (www.pnas.org), reported finding virtually no variation among those crucial genes from devil to devil. Little wonder, then, that the poor animals share their tumor. They share so much else in common — too much for their own good.

“This study,” the Siddle group wrote, “provides a frightening example of the potential consequences of loss of genetic diversity in a region of the genome that is vital for self/nonself recognition as well as disease resistance.”

What will happen to the Tasmanian devil? Siddle’s group couldn’t say. No one, right now, can say. It’s impossible to foresee whether the disease will carry Sarcophilus harrisii to the brink of extinction,
It’s impossible to foresee whether some combination of conservation measures might offer hope of saving the Tasmanian devil in the wild.
or whether some desperate combination of measures (culling, barricading against the tumor’s spread, captive breeding, quarantine, release of tumor-free devils on an offshore island) might offer hope of saving it in the wild. As the Siddle group concluded, the best time to cope with the problem of genetic impoverishment is before that problem occurs: “These findings reinforce the need for conservation biologists to focus on genetic diversity at functionally important loci that play a role in population fitness when designing conservation strategies.”

Behind the dry language, behind the genetic complexities, lie old truths we know well: keep habitat abundant and intact, and don’t let a species become rare.

This article by David Quammen for Yale Environment 360 is a new look and an update on the Tasmanian devil and tumor evolution, a subject he first covered in a feature article, “Contagious Cancer,” which appeared in Harper’s Magazine in April, 2008.

POSTED ON 16 Oct 2008 IN Biodiversity Climate Pollution & Health Science & Technology Water Australia Australia 

COMMENTS


What a fascinating and compelling article. I hope Yale e360 continues to follow the conservation efforts to save the Tasmanian devil.
Posted by Alan Freund on 19 Oct 2008


Your report was great. I have a science project and I'm going to put some of it in to my essay.
Posted by shynia bruce on 18 Feb 2009


Comments have been closed on this feature.
david quammenABOUT THE AUTHOR
David Quammen is an award-winning science journalist, nonfiction author, and (former) novelist who has spent most of his life in Montana. He has three times received the National Magazine Award, for his essays and other short work. His twelve books include The Song of the Dodo, Monster of God, and The Reluctant Mr. Darwin. He currently holds the positions of Contributing Writer for National Geographic Magazine and Wallace Stegner Professor of Western American Studies at Montana State University.

 
 

RELATED ARTICLES


A Public Relations Drive to
Stop Illegal Rhino Horn Trade

Conservation groups are mounting campaigns to persuade Vietnamese consumers that buying rhino horn is decidedly uncool. But such efforts are likely to succeed only as part of a broader initiative to crack down on an illicit trade that is decimating African rhino populations.
READ MORE

Amid Elephant Slaughter,
Ivory Trade in U.S. Continues

In the last year, the U.S. government and nonprofits have put a spotlight on the illegal poaching of Africa’s elephants and Asia’s insatiable demand for ivory. But the media coverage has ignored a dirty secret: The U.S. has its own large ivory trade that has not been adequately regulated.
READ MORE

Animal ‘Personhood’: Muddled
Alternative to Real Protection

A new strategy of granting animals “personhood” under the law is being advanced by some in academia and the animal rights movement. But this approach fails to address the fundamental truth that all species have an equal right to their own existence.
READ MORE

The Case Against De-Extinction:
It’s a Fascinating but Dumb Idea

Even if reviving extinct species is practical, it’s an awful idea. It would take resources away from saving endangered species and their habitats and would divert us from the critical work needed to protect the planet.
READ MORE

De-Extinction Debate: Should We
Bring Back the Woolly Mammoth?

A group led by futurist Stewart Brand is spearheading a movement to try to use genetic technology to revive extinct species, such as the woolly mammoth and the passenger pigeon. In a Yale Environment 360 debate, Brand makes the case for trying to bring back long-gone species, while biologist Paul R. Ehrlich argues that the idea is ill conceived and morally wrong.
READ MORE

 

MORE IN Reports


Mining Showdown in Andes
Over Unique Páramo Lands

by chris kraul
High-altitude neotropical ecosystems known as páramos are increasingly at risk in Colombia and elsewhere in South America as major mining companies seek to exploit rich deposits of gold and other minerals. Such projects, scientists warn, could have serious impacts on critical water supplies.
READ MORE

Unsustainable Seafood: A New
Crackdown on Illegal Fishing

by richard conniff
A recent study shows that a surprisingly large amount of the seafood sold in U.S. markets is caught illegally. In a series of actions over the last few months, governments and international regulators have started taking aim at stopping this illicit trade in contraband fish.
READ MORE

A Public Relations Drive to
Stop Illegal Rhino Horn Trade

by mike ives
Conservation groups are mounting campaigns to persuade Vietnamese consumers that buying rhino horn is decidedly uncool. But such efforts are likely to succeed only as part of a broader initiative to crack down on an illicit trade that is decimating African rhino populations.
READ MORE

On Fracking Front, A Push
To Reduce Leaks of Methane

by roger real drouin
Scientists, engineers, and government regulators are increasingly turning their attention to solving one of the chief environmental problems associated with fracking for natural gas and oil – significant leaks of methane, a potent greenhouse gas.
READ MORE

Scientists Focus on Polar Waters
As Threat of Acidification Grows

by jo chandler
A sophisticated and challenging experiment in Antarctica is the latest effort to study ocean acidification in the polar regions, where frigid waters are expected to feel most acutely the ecological impacts of acidic conditions not seen in millions of years.
READ MORE

On Ravaged Tar Sands Lands,
Big Challenges for Reclamation

by ed struzik
The mining of Canada’s tar sands has destroyed large areas of sensitive wetlands in Alberta. Oil sands companies have vowed to reclaim this land, but little restoration has occurred so far and many scientists say it is virtually impossible to rebuild these complex ecosystems.
READ MORE

A New Leaf in the Rainforest:
Longtime Villain Vows Reform

by rhett butler
Few companies have done as much damage to the world’s tropical forests as Asia Pulp & Paper. But under intense pressure from its customers and conservation groups, APP has embarked on a series of changes that could significantly reduce deforestation in Indonesia and serve as a model for forestry reform.
READ MORE

In a Host of Small Sources,
Scientists See Energy Windfall

by cheryl katz
The emerging field of “energy scavenging” is drawing on a wide array of untapped energy sources­ — including radio waves, vibrations created by moving objects, and waste heat from computers or car exhaust systems — to generate electricity and boost efficiency.
READ MORE

Life on Mekong Faces Threats
As Major Dams Begin to Rise

by joshua zaffos
With a massive dam under construction in Laos and other dams on the way, the Mekong River is facing a wave of hydroelectric projects that could profoundly alter the river’s ecology and disrupt the food supplies of millions of people in Southeast Asia.
READ MORE

As Fracking Booms, Growing
Concerns About Wastewater

by roger real drouin
With hydraulic fracturing for oil and gas continuing to proliferate across the U.S., scientists and environmental activists are raising questions about whether millions of gallons of contaminated drilling fluids could be threatening water supplies and human health.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

e360 video contest
Yale Environment 360 is sponsoring a contest to honor the best environmental videos.
Find more contest information.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

 

OF INTEREST



Yale