09 Mar 2009: Report

Finding New Species:
The Golden Age of Discovery

Aided by new access to remote regions, researchers have been discovering new species at a record pace — 16,969 in 2006 alone. The challenge now is to preserve threatened ecosystems before these species, and others yet unknown, are lost.

by bruce stutz

Even as biodiversity seems to be everywhere under threat or in retreat, scientists are discovering and naming new species at a greater rate than anytime during taxonomy’s 250-year history. Some 25 percent of all known amphibian species were discovered only over the last ten years, a period when their numbers worldwide have been in desperate decline. Since 1993 the number of known mammal species has increased 10 percent.

A 2008 study by the Arizona State University International Institute for Species Exploration reported 16,969 new species of plants and animals described in 2006 alone (not including new species of microbial life), which amounts to some 1 percent of Earth’s 1.8 million known species.

While insects accounted for more than half of these newfound species — “We’re finding them at a pace about twice the overall historic average,” says the Arizona Institute’s director, Quentin Wheeler — the total included 2,000 plants and 1,000 vertebrates, among them 185 mammals, 196 reptiles, 108 amphibians, and 37 birds.

The new finds aren’t small cryptic oddities. The recent mammal discoveries range in size from a 3-gram shrew-tenrec to a 100-kilogram antelope. They include a hundred new bat species, a rodent species thought extinct for 11 million years, a pygmy deer from Bhutan, a macaque from the Himalayan foothills, a white titi monkey from Brazil, and a pygmy sloth from Panama. While most of the finds come from the world’s still underexplored tropical forests, discoveries have been made in mountains, deserts, and even in well-surveyed temperate regions.

Many of the new finds result from good old-fashioned fieldwork, especially from expeditions into regions previously inaccessible due to lack of roads or in some cases off limits due to war or politics. Google Earth has given scientists a way to scout terrain and cheaply reconnoiter habitats likely to produce new finds. Taxonomists at work in museums of natural history still find as yet unnamed specimens among the collections of preserved specimens.

Many of the discoveries result from new techniques in molecular genetics. These can show that what scientists thought to be a single widely distributed species is not one species at all, but rather a collection of small populations that look alike but are genetically and evolutionarily distinct. The very common dusky salamander, for instance, long thought to be a single population ranging throughout the U.S. Appalachian and Adirondack Mountains, from New York to Alabama, has now been found to made up of four separate species. While some have suggested that genetic “hair-splitting” has inflated the number of new species, recent studies have shown that “taxonomic inflation” is the exception, not the rule.

The new discoveries are all welcome, says Wheeler, but also worrisome. For as much as they expand our knowledge of the world’s ecosystems, they also reflect “our profound ignorance of many of the most species-rich taxa inhabiting our planet.”

The rate of discovery, in fact, may be telling us that estimates of the number of species still unknown — ranging from three to ten million to the tens of millions — may be far too low. Discoveries in hot springs or in deep ocean vents, for instance, hint at entirely new and unexplored ecosystems. Extinction rates may therefore also have been underestimated, meaning
Many more species than previously thought may have been lost without ever having been found.
that many more species than previously thought have been lost without ever having been found.

What especially concerns Wheeler and other researchers is that the taxonomic evidence demonstrates that, unlike human beings that can adapt to life across a wide range of conditions and habitats, most species of plants and animals have evolved to survive only within a narrow range of conditions.

In a February 2009, paper in the Proceedings of the National Academy of Sciences, Gerardo Ceballos and Paul Ehrlich found that 81 percent of mammal species discovered over the last 15 years have just such restricted distributions. A group of lemurs in Madagascar, for example, once thought to be composed of two species, was found, through genetic studies, to be made up of at least 13 species. A golden capuchin monkey, discovered in 2006, survives only in a 200-hectare remnant of forest surrounded by sugar plantations.

A common skipper butterfly species was found to be composed of ten species, each with a distinctive life history. In a place such as Sri Lanka, writes Jörn Köhler of the Department of Zoology at the Hessisches Landesmuseum in Darmstadt, Germany, genetic distinctions could double the number of known amphibian species. “The recognition of new species may exacerbate an organism’s threat status, because it can result in subdivision of a once widespread species into numerous species, each with a smaller and, hence, a more precarious distribution.”

In this “new age of discovery,” as Ceballos and Ehrlich call it, conservationists may have to rethink their paradigms and priorities. If the number and diversity of species is so much greater than previously thought, they suggest that it may be prudent to preserve as many genetically distinct species as possible. Although scientists recognize that there’s species redundancy built into most ecosystems, the problem, write Ehrich and Ceballos, is that “no one is in a position to decide the full conservation value of any species . . . let alone the other more or less distinct entities now being revealed.”

Counterintuitive as it may sound, Ehrlich told me in an e-mail that “lacking any other information, one would put (conservation) effort into the (species) with a small range.” Such species may be key to the survival of their small ecosystem and their loss, even among many related species, can alter an entire ecosystem.

“Many newly discovered entities may supply previously unrecognized ecosystem services,” write Ceballos and Ehrlich. The effects can be insidious. In the Panamanian tropical forests, for instance, researchers found that where there are fewer rodent species, more of the remaining species carry Hantaviruses known to infect humans.

These concerns become most evident in the Earth’s biodiversity hotspots such as Madagascar, India, Indonesia, South America, and Southeast Asia. Along the Mekong River watershed, for instance, more than a thousand
A long-whiskered rodent called the Kha-Nyou was “discovered” lying for sale on a table in a local market.
new species have been discovered over the last ten years — an average of two new species each week — and the pace of discovery appears to be unabated. Running 3,000 miles through China, Myanmar, Laos, Thailand, Cambodia, and Vietnam, the Mekong and its surrounding mountains and forests were always known to hold extraordinary reserves of biodiversity, more species per unit area than any river other than the Amazon. The tropical forests of the Annamite Mountains east of the river along the border of Laos and Vietnam were a lost world that had persisted through the last ice age. These were some of the least explored places on earth, made even more inaccessible by political instability and war.

Michael Hedemark, head of Wildlife Conservation Society’s Laos programs, says that beginning in the 1990s the changed political environment brought about a new generation of national scientists and increased cooperation between national and international science and conservation organizations. Not long after, new species began turning up everywhere, even in local markets where new roads led to increases in wildlife hunting and trade.

The long whiskered rodent called the Kha-Nyou, whose last relations died off some 11 million years ago, was “discovered” lying for sale on a table next to some vegetables by WCS researcher Robert Timmins. It was in a market that Timmins also found a new species of striped Sumatran rabbit.

Also found in the Annamites have been rare, gray and black-striped civets — Owston’s civet and spotted linsang; two new species of deer-like muntjac — the large-antlered muntjac and the dark Annamite muntjac (identified by molecular analysis of found antlers); and a new bat species, the Laos roundleaf bat. New species of amphibians — salamanders and frogs — have also been increasing the tally of new species in Laos.

But peace has also begun exacting a cost on these emergent reserves of biodiversity. Some 320 million people live in countries of the Mekong
One researcher hopes the flood of discovery will inspire a “taxonomic moon-shot,” a worldwide race to find new species.
watershed, and new economic development has engendered unsustainable logging, fishing, and mining. New dams threaten species dependent upon free-flowing streams. New roads enhance illegal hunting. Within a couple of months of discovering a new species of salamander in Laos, the Wildlife Conservation Society found it was commanding high prices in the Japanese pet trade. Forests are being cut to provide land for cash crops such as cacao, coffee, and sugar cane.

If biodiversity conservation is difficult enough in good times, Hedemark told me, he worries what hard economic times will mean.

Researchers recognize that their window on new discoveries can close quickly. A single bulldozer or a day’s logging can destroy a species’ entire habitat. Wheeler told me of a researcher who discovered a new species of legume in Madagascar. By the time her finding was published, the species no longer existed.

Wheeler hopes that the flood of new discoveries will restore the reputation of taxonomy, and give new urgency to developments in a science that he says has for too long been considered an arcane exercise in describing species or that had little value in conservation. Maybe, he says, the attention will inspire a “taxonomic moon-shot,” a worldwide race to find new species.

“The fact is that we depend on taxonomy to tell us the role species have in ecosystems,” Wheeler notes. “We’re not going to understand a species’ ecological place without understanding its evolutionary significance. For that we need good baseline information.” Otherwise, he says, echoing Ceballos and Ehrlich, “how do I know whether to save a thousand species or a single unique species?”

For their part, Ceballos and Ehrlich believe the threat to species is so overwhelming that conservation efforts must take precedence over taxonomic studies. “It will at least,” they told me, “provide time to do the taxonomic studies as we go along.“

The tragic irony, says Wheeler, is that in the midst of this taxonomic golden age, “we could lose more species in this century than we’ve found in the last two.”

POSTED ON 09 Mar 2009 IN Biodiversity Climate Policy & Politics Africa Asia North America 

COMMENTS


What is also sad - and compounds the magnitude of the loss - is that much of the intellectual property associated with these plants and animals is being lost as various indigenous peoples are marginalized, forced out of traditional lands, or slowly assimilated into the dominant society. A vast amount of potential medicinal, ecological, and other knowledge is being lost as a result.
Posted by Indigenous Peoples Advocate on 10 Mar 2009


Interesting information on discovered species and extinct species:

http://www.endangeredspeciesinternational.org/overview3.html


Posted by John Larton on 23 Mar 2009


In an era dominating by reports of declining wildlife numbers – due to poaching, human-wildlife conflicts and prolonged drought – these findings are a breath of fresh air.

But I do agree that the findings are equally alarming. If over 16,000 animal species can be discovered in a single year, just how many unknown species are getting wiped off the face of the earth even before the world knows they exist?

Posted by Ateenyi on 03 Feb 2010


Comments have been closed on this feature.
bruce stutzABOUT THE AUTHOR
Bruce Stutz writes on science, nature, and the environment. A former editor-in-chief of Natural History, he is a contributing editor to OnEarth. He has written for the New York Times, The Christian Science Monitor, The Washington Post, Discover and Audubon. He is the author of Natural Lives, Modern Times and Chasing Spring, An American Journey Through a Changing Season. In a recent article for Yale e360, Stutz wrote about how planners are trying to tackle sprawl in Europe.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


How Climate Change Could Jam
The World's Ocean Circulation

Scientists are closely monitoring a key current in the North Atlantic to see if rising sea temperatures and increased freshwater from melting ice are altering the “ocean conveyor belt” — a vast oceanic stream that plays a major role in the global climate system.
READ MORE

Exploring How and Why
Trees ‘Talk’ to Each Other

Ecologist Suzanne Simard has shown how trees use a network of soil fungi to communicate their needs and aid neighboring plants. Now she’s warning that threats like clear-cutting and climate change could disrupt these critical networks.
READ MORE

Science in the Wild: The Legacy
Of the U.S. National Park System


READ MORE

Chocolate in the Jungle: Racing
To Save a Disappearing Forest

A runner-up in the 2016 Yale Environment 360 Video Contest tells the story of a small group of Ecuadorians working to preserve remnants of South America’s ecologically rich Chocó Rainforest by sustainably farming cacao.
READ MORE

Views: Los Angeles Aims to
Revitalize a Concrete River


READ MORE

 

MORE IN Reports


High Stakes on the High Seas:
A Call for International Reserves

by nicola jones
Marine protected areas in national waters have proven successful in helping depleted fish stocks to recover. Now, there is growing momentum for the creation of extensive reserves on the high seas as a way of reversing decades of rampant overfishing.
READ MORE

For China’s Polluted Megacities,
A Focus on Slashing Emissions

by mike ives
The booming industrial center of Shenzhen is a showcase for Chinese efforts to cut CO2 emissions and make the nation's burgeoning cities more livable. But it remains to be seen whether China's runaway industrial development can give way to a low-carbon future.
READ MORE

Rocky Flats: A Wildlife Refuge
Confronts Its Radioactive Past

by fred pearce
The Rocky Flats Plant outside Denver was a key U.S. nuclear facility during the Cold War. Now, following a $7 billion cleanup, the government is preparing to open a wildlife refuge on the site to the public, amid warnings from some scientists that residual plutonium may still pose serious health risks.
READ MORE

Pressure Mounts to Reform Our
Throwaway Clothing Culture

by marc gunther
Americans dispose of about 12.8 million tons of textiles annually — 80 pounds for each man, woman, and child. In the U.S. and around the world, a growing number of environmentalists and clothing industry executives say it’s time to end the wasteful clothing culture and begin making new apparel out of old items on a large scale.
READ MORE

The New Green Grid: Utilities
Deploy ‘Virtual Power Plants’

by maria gallucci
By linking together networks of energy-efficient buildings, solar installations, and batteries, a growing number of companies in the U.S. and Europe are helping utilities reduce energy demand at peak hours and supply targeted areas with renewably generated electricity.
READ MORE

Sticker Shock: The Soaring Costs
Of Germany’s Nuclear Shutdown

by joel stonington
German Chancellor Angela Merkel’s 2011 decision to rapidly phase out the country’s 17 nuclear power reactors has left the government and utilities with a massive challenge: How to clean up and store large amounts of nuclear waste and other radioactive material.
READ MORE

How to Restore an Urban River?
Los Angeles Looks to Find Out

by jim robbins
Officials are moving ahead with a major revitalization of the Los Angeles River – removing miles of concrete along its banks and re-greening areas now covered with pavement. But the project raises an intriguing question: Just how much of an urban river can be returned to nature?
READ MORE

How Growing Sea Plants Can
Help Slow Ocean Acidification

by nicola jones
Researchers are finding that kelp, eelgrass, and other vegetation can effectively absorb CO2 and reduce acidity in the ocean. Growing these plants in local waters, scientists say, could help mitigate the damaging impacts of acidification on marine life.
READ MORE

Vanishing Act: What’s Causing Sharp
Decline in Insects and Why It Matters

by christian schwägerl
Insect populations are declining dramatically in many parts of the world, recent studies show. Researchers say various factors, from monoculture farming to habitat loss, are to blame for the plight of insects, which are essential to agriculture and ecosystems.
READ MORE

For India’s Captive Leopards,
A Life Sentence Behind Bars

by richard conniff
As sightings of leopards in populated areas increase, Indian authorities are trapping the animals and keeping them in captivity — often in small cages without adequate food or veterinary care. The real solution, wildlife advocates say, is to educate the public on how to coexist with the big cats.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“Ugandan
Ugandan scientists monitor the impact of climate change on one of Africa’s most diverse forests and its extraordinary wildlife.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.

e360 SPECIAL REPORT

“Tainted
A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

OF INTEREST



Yale