10 Sep 2012: Report

At Edge of Peruvian Andes,
Tracking Impacts of Warming

The Andes in eastern Peru, with steep slopes and remarkable biodiversity, are what one scientist calls a “perfect laboratory” for studying the effects of climate change. E360 contributor Elizabeth Kolbert trekked there with researchers seeking to determine if tree populations can move uphill fast enough to survive warming temperatures.

by elizabeth kolbert

“Trees are stunning,” Miles Silman was saying. “They’re beautiful. It’s true they take a little more appreciation. You walk into a forest, and the first thing you notice is, ‘That’s a big tree,’ or ‘That’s a tall tree,’ but when you start to think about their life history, about everything that goes into getting a tree to that spot, it’s really neat. It’s kind of like wine; once you start to understand it, it becomes more intriguing.”

We were standing in eastern Peru, at the edge of the Andes, on top of a 12,000-foot mountain, where, in fact, there were no trees — just scrub and, somewhat incongruously, a dozen or so cows, eyeing us suspiciously. The sun was sinking, and with it the temperature, but the view, in the orange glow of evening, was extraordinary. To the east was the ribbon of the Alto Madre de Dios River, which flows into the Beni, which flows into the Madeira, which eventually meets the Amazon. Spread out before us was Manu National Park, one of the world’s great biodiversity “hot spots.”

View gallery
Manu National Park in Peru

Photo courtesy of Miles Silman
A view of Manu National Park in eastern Peru.
“In your field of vision is one out of every nine bird species on the planet,” Silman said. “Just in our plots alone, we have over a thousand species of trees.”

Silman, who teaches at Wake Forest University, calls himself a forest ecologist, though he also answers to the title of tropical ecologist, community ecologist, or conservation biologist. He began his career thinking about how forest communities are put together, and whether they tend to remain stable over time. This led him to look at the ways the climate in the tropics had changed in the past, which led him, naturally enough, to look into how it is projected to change in the future. What he learned inspired him to establish the network of tree plots that snakes down the mountain we were standing on.

In the popular imagination, global warming threatens cold-adapted species, like polar bears and Emperor penguins. However, Silman and many other ecologists have come to believe that climate change is likely to have just as great an impact, indeed probably an even greater impact, in the tropics.

The reasons for this are several. Temperatures in the tropics are a lot less variable than at higher latitudes, so tropical species tend to have a narrow range of “thermal tolerance.” Also in the tropics, temperature belts tend to be wider; thus, to track the temperature changes projected for the next
A researcher handed me a leaf the size of a dinner plate. ‘This is a new species,’ he said.
century, tropical species will have to move a lot farther (and therefore faster) than temperate species. Meanwhile, because the tropics are already the hottest places on earth, temperature increases there will create “novel climates” of a sort that probably haven’t been seen on earth in millions of years. Finally, and perhaps most significantly, the tropics are where most species actually live.

“When we think about climate change we often think that high latitudes are going to be the places that are affected the most,” Silman told me. “If you look at the absolute magnitude of change there, it’s high, though it’s surprisingly high in the low latitudes, too. But if we think about what’s important to organisms, it’s places on the planet where climates are going to disappear or climates are going to be so new that they’re going to present challenges to species that they’ve never seen. And if you look at either of those, what you find is that instead of the high latitudes being most affected, it’s the low latitudes, and more than that it’s the highest biodiversity areas of the low latitudes.”

The next morning, we got up early to watch the sun rise over the ridge. Then we packed up our gear and headed down to the first plot. “Pick out a leaf with an interesting shape,” Silman instructed me once we’d descended into the cloud forest. “You’ll see it for a few hundred meters and then it will be gone. That’s it. That’s the tree’s entire range.”

Silman was carrying a machete, which he used to hack away at the undergrowth. Occasionally he waved it in the air to point out something interesting — a spray of tiny white orchids; a parasitic plant with a bright orange flower; a bright red fuchsia that’s pollinated by a hummingbird whose bill is longer than its body. Several of Silman’s graduate students were also along on the trip. One of them, William Farfan Rios, handed me a leaf the size of a dinner plate. “This is a new species,” he said. Along the transect, the students have found 30 new species of tree, and one entirely new genus. (The new genus has yet to be named.)

“That’s not like finding another kind of oak or another kind of hickory. It's like finding ‘oak’ or ‘hickory,’” Silman observed. “That’s how poorly known these forests are.”

View gallery
Climate researcher Manu National Park

Photo courtesy of Miles Silman
Researcher William Farfan collects a species of Weinmannia near the treeline in the Andes.
Each of Silman’s tree plots is one hectare. Within each plot, every tree with a diameter of more than ten centimeters has been identified, tagged, and given a number. In plot 1, which sits at an altitude of 3,450 meters (11,320 feet) there are 569 trees 10 centimeters or wider, belonging to 38 different species. (This is greater than the number of tree species in all of Canada’s 290-million-hectare boreal forest.) In plot 4, at 2,750 meters (8,860 feet), there are 777 tagged trees from 60 species; more than 90 percent of these species are different from the species found at plot 1. In plot 8, at elevation 1,800 meters (5,905 feet) there are 1083 tagged trees from 117 different species. None of these species is the same as in plot 1.

Trees, of course, can’t move, but they can, in effect, migrate, by dispersing seeds that successfully grow into new trees. In the Andes, the temperature gradient is vertical, rather than horizontal; species can track the climate by migrating up the mountainside, instead of migrating latitudinally. The steep slope combined with the extraordinary diversity make the region, in Silman’s words, “a perfect laboratory” for studying the effects of climate change.

Currently, to track the climate, trees in the Andes should be migrating upslope at a rate of roughly 20 feet a year, and that rate will increase to 30 feet a year if carbon dioxide levels continue to climb. (Under a “business as usual” emissions scenario, temperatures in the eastern Andes are expected to rise by 9 degrees Fahrenheit by 2100.) While this is significantly less than the rate trees would need to move if they were going to track the climate by migrating to a higher latitude, it’s still very fast — quite possibly faster than trees in the region have ever migrated in the past. Among the questions Silman and his colleagues are hoping to answer with his plots are whether trees are in fact capable of moving rapidly enough to track climate change, and if not, what will happen.

Silman and his students first installed the plots in 2003. They re-censused them in 2007. Even after such a brief interval, one of Silman’s post-docs, Kenneth Feeley, found compelling evidence that some trees, were, in fact, on the move. Others, meanwhile, had remained stationary. Trees in the genus Schefflera, which includes the houseplant known as the umbrella tree, were moving the fastest; they had climbed upslope at the astonishing rate of nearly 100 feet a year. Trees in the coffee-family genus Ladenbergia, by contrast, had not migrated at all. For all the trees in the plots, Feeley, who now is on the faculty at Florida International University, calculated that the average migration rate was eight feet a year — significant, but not nearly enough for the trees to remain in equilibrium with the climate.

In a 2010 paper published in the journal Global Change Biology, Silman and Feeley looked at what differing “migration scenarios” would mean for Andean plants. Under what they called a “perfect migration” scenario, in
Trees in the genus Schefflera had climbed upslope at the astonishing rate of nearly 100 feet a year.
which all species are able to migrate fast enough to track the climate, some plant species will lose out, but many others will gain population as the climate warms. Under a “no migration” scenario, virtually all species becomes losers, with population declines of between 53 and 96 percent. And under an “observed migration” scenario, where plants move as fast as they have been observed to do in the tree plots, species will lose, on average, 40 percent of their population.

In addition to speed of migration, another key variable, Feeley and Silman found, was land use. In the Andes, the highlands are often cleared for grazing — hence the cows we encountered at the top of the mountain — so the tree line is artificially depressed. If this pattern doesn’t change (and there’s no particular reason to believe that it will), then virtually all species now found at high elevations will decline, no matter how quickly they’re able to migrate.


The World’s Tropical Forests
Are Already Feeling the Heat

The World’s Tropical Forests Are Already Feeling the Heat
Much attention has been paid to how global warming is affecting the world’s polar regions and glaciers. But William Laurance warns that rising temperatures could have an equally profound impact on rainforests and are already taking a toll on some tropical species.
“If the tree line stands still, it doesn’t matter what scenario you have,” Silman said.

That evening, we set up camp in a clearing near plot 4. Silman and Farfan went to get water, and when they came back, Farfan was carrying a spray of white berries interspersed with what looked like purple tassels. It was the infloresence of a tree in the Brassicaceae or mustard family. No one in the group had ever seen anything quite like it before, which led to speculation that it might belong to yet another new species. It was doused in alcohol for transport down the mountain, because especially now, with the future of the forest so uncertain, it seems important that every species be counted.

POSTED ON 10 Sep 2012 IN Climate Forests Policy & Politics Pollution & Health Science & Technology Central & South America Europe 


For more information on Miles Silman's and his collaborator's work along the Andes transect, visit the ABERG (Andes Biodiversity and Ecosystem Research Group) website:


Posted by Noah Yavit on 10 Sep 2012

Great article and a question...

Regarding the point that "Silman and many other ecologists have come to believe that climate change is likely to have just as great an impact, indeed probably an even greater impact, in the tropics", can someone answer how the tropical ecosystems at sea level will be affected? Specifically, I understand that low elevation species will move to higher elevations, however, where will the species come from to fill the void left by former tropical sea level species?

Posted by Terry Mock on 13 Sep 2012

Comments have been closed on this feature.
elizabeth kolbertABOUT THE AUTHOR
Elizabeth Kolbert has been a staff writer for the New Yorker since 1999. Her 2005 New Yorker series on global warming, “The Climate of Man,” won a National Magazine Award and was extended into a book, Field Notes from a Catastrophe, which was published in 2006. In previous articles for Yale Environment 360, she has written about a study that found the pace of global warming is outstripping projections and about the scientific debate over designating a new geological epoch to reflect the changes that humans have caused.



Will Paris Conference Finally
Achieve Real Action on Climate?

The emission pledges from the world’s nations still fall short of the goal for limiting global warming. But as negotiators convene in Paris this week, there is cautious optimism that a significant international agreement on climate can be reached.

Why Brazil’s New Pledges On
Carbon Emissions Fall Short

Brazil has won international acclaim for curbing deforestation. But Brazilian forestry expert Maria Fernanda Gebara says her country has not gone far enough in its pledges to cut carbon emissions and continues to have a dismal record on developing wind and solar power.

On Thin Ice: Big Northern Lakes
Are Being Rapidly Transformed

As temperatures rise, the world’s iconic northern lakes are undergoing major changes that include swiftly warming waters, diminished ice cover, and outbreaks of harmful algae. Now, a global consortium of scientists is trying to assess the toll.

Beyond Keystone: Why Climate
Movement Must Keep Heat On

It took a committed coalition and the increasingly harsh reality of climate change to push President Obama to reject the Keystone XL pipeline. But sustained public pressure will now be needed to force politicians to take the next critical actions on climate.

A Tale of Two Northern European Cities:
Meeting the Challenges of Sea Level Rise

For centuries, Rotterdam and Hamburg have had to contend with the threat of storm surges and floods. Now, as sea levels rise, planners are looking at innovative ways to make these cities more resilient, with new approaches that could hold lessons for vulnerable urban areas around the world.


MORE IN Reports

For Storing Electricity, Utilities
Are Turning to Pumped Hydro

by john roach
High-tech batteries may be garnering the headlines. But utilities from Spain to China are increasingly relying on pumped storage hydroelectricity – first used in the 1890s – to overcome the intermittent nature of wind and solar power.

On Thin Ice: Big Northern Lakes
Are Being Rapidly Transformed

by cheryl katz
As temperatures rise, the world’s iconic northern lakes are undergoing major changes that include swiftly warming waters, diminished ice cover, and outbreaks of harmful algae. Now, a global consortium of scientists is trying to assess the toll.

The Haunting Legacy of
South Africa’s Gold Mines

by mark olalde
Thousands of abandoned gold mines are scattered across South Africa, polluting the water with toxics and filling the air with noxious dust. For the millions of people who live around these derelict sites, the health impacts can be severe.

The Sushi Project: Farming Fish
And Rice in California's Fields

by jacques leslie
Innovative projects in California are using flooded rice fields to rear threatened species of Pacific salmon, mimicking the rich floodplains where juvenile salmon once thrived. This technique also shows promise for growing forage fish, which are increasingly threatened in the wild.

A Delicate Balance: Protecting
Northwest’s Glass Sponge Reefs

by nicola jones
Rare and extensive reefs of glass sponges are found only one place on earth – a stretch of the Pacific Northwest coast. Now, efforts are underway to identify and protect these fragile formations before they are obliterated by fishing vessels that trawl the bottom.

As the Fracking Boom Spreads,
One Watershed Draws the Line

by bruce stutz
After spreading across Pennsylvania, fracking for natural gas has run into government bans in the Delaware River watershed. The basins of the Delaware and nearby Susquehanna River offer a sharp contrast between what happens in places that allow fracking and those that do not.

Will Tidal and Wave Energy
Ever Live Up to Their Potential?

by sophia v. schweitzer
As solar and wind power grow, another renewable energy source with vast potential — the power of tides and waves — continues to lag far behind. But progress is now being made as governments and the private sector step up efforts to bring marine energy into the mainstream.

The Rapid and Startling Decline
Of World’s Vast Boreal Forests

by jim robbins
Scientists are becoming increasingly concerned about the fate of the huge boreal forest that spans from Scandinavia to northern Canada. Unprecedented warming in the region is jeopardizing the future of a critical ecosystem that makes up nearly a third of the earth’s forest cover.

Northern Forests Emerge
As the New Global Tinderbox

by ed struzik
Rapidly rising temperatures, changes in precipitation, and increased lightning strikes are leading to ever-larger wildfires in the northern forests of Alaska, Canada, and Siberia, with potentially severe ecological consequences.

For U.S. Tribes, a Movement to
Revive Native Foods and Lands

by cheryl katz
On ancestral lands, the Fond du Lac band in Minnesota is planting wild rice and restoring wetlands damaged by dams, industry, and logging. Their efforts are part of a growing trend by Native Americans to bring back traditional food sources and heal scarred landscapes.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

A 2015 Yale e360 Video Contest winner captures stunning images of wild salmon runs in Alaska.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.


A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.