11 Nov 2013: Interview

Using Ocean Robots to Unlock
Mysteries of CO2 and the Seas

Marine phytoplankton are vital in absorbing ever-increasing amounts of CO2 from the atmosphere. In a Yale Environment 360 interview, researcher Tracy Villareal explains how he is using remotely operated robots to better understand how this process mitigates climate change.

by todd woody

As climate change accelerates, scientists are focusing on the key role the world’s oceans play in absorbing half the planet’s carbon dioxide. But the precise mechanisms by which the oceans remove carbon from the atmosphere, the limits of that process, and the consequences for marine life remain poorly understood compared to the terrestrial carbon cycle.

Tracy Villareal
Tracy Villareal
That has led Tracy Villareal, a professor of marine science at the University of Texas at Austin, to devote his research to diatom phytoplankton, the tiny, marine plant species that are as critical to sucking up carbon from the atmosphere as the world’s forests. To better understand precisely how diatoms sequester carbon, Villareal has become a pioneer in the use of a wave- and solar-powered ocean-going robot, known as the Wave Glider. The surfboard-sized robots are packed with sensors and communications gear and can operate autonomously at sea for up to a year, enabling Villareal to deploy them in remote locations to monitor diatom blooms — at a fraction of the cost of a manned research vessel.

In September, Villareal won the PacX Prize, a contest sponsored by the maker of the Wave Glider, Silicon Valley-based Liquid Robotics. He received a $50,000 research grant and six months’ use of Wave Gliders to conduct his research.

In an interview with Yale Environment 360 contributor Todd Woody, Villareal discussed why unlocking the secrets of diatoms is critical to understanding climate change and how deploying robots will revolutionize marine science. “The [impact] is going to be enormous," says Villareal, "because for the first time we can get out there and just sit if we need to.”

Yale Environment 360: What is the role of diatom phytoplankton in the ocean ecosystem?
With ocean acidification, we’re getting changes in things that directly affect phytoplankton.

Tracy Villareal: Diatoms are one of the primary food producers in the ocean, about 30 to 50 percent of the primary production. Diatoms get eaten by small animals, which are then eaten by larger ones. Or they can get eaten directly by fish like anchovies or sardines. They’re a major part of the food web in many parts of the ocean.

e360: Why are phytoplankton important to understanding climate change’s impact on the world’s oceans?

Villareal: Phytoplankton are a really important player in how carbon cycles between the atmosphere and the ocean and the deep sea. They’re the grass of the sea. They take the carbon out of the atmosphere and package it so it’s eaten or it sinks directly to depth and is sequestered.

e360: Do we know what percentage of CO2 has been removed more or less permanently by sinking?

Villareal: Permanent has different meanings. There’s permanent removal to the sediments, which is removal for many thousands of years. Then there’s just transporting it to the deep ocean, where it can take centuries to a thousand years before it gets back to the open ocean. So it’s gone for a practical time scale for humans. Burial in sediments is for really long time scales. We’re talking hundreds of thousands of years to millions of years.

Tracy Villareal
Liquid Robotics
Villareal will use robotic Wave Gliders to monitor the development of diatom blooms.
e360: So in other words, understanding the processes of phytoplankton and how much carbon they absorb is going to give us greater insight into the impact of climate change on the oceans?

Villareal: Yes, it gives us a very good idea of how much CO2 is going to be left in the atmosphere to modify the earth’s temperature and also how much is going into the ocean that will affect acididity. And anything that isn’t removed in a particulate or organic form will stay as CO2 and change the pH, which is changing measurably.

With the effects of ocean acidification and changes in the heat content of both the ocean and the atmosphere, we’re getting changes in all sorts of things that directly affect phytoplankton. It affects how stable the water column is and how shallow the fixed layer is in capturing nutrients in the deep ocean. And how currents are moving things around. And that of course is a pretty important component because as the phytoplankton rise and fall in the ocean, it affects all the food web downstream.

Over the large scale of the ocean, with changes in stratification and nutrient flux at depth and where the currents are going, it’s predicted that the oceans are going to have less phytoplankton in surface waters.

e360: In your own research, what’s the big question or questions you’re trying to answer about phytoplankton?

Villareal:For me, it’s the role of these open-ocean diatoms. While they are not nearly as abundant there as in coastal zones, the ones that are out there actually play a really significant role. There is a nitrogen-fixing
Because the ocean is so big and so remote, it takes a lot of resources to get out there.
symbiosis between diatoms and blue-green algae that create these open-ocean blooms. In the Pacific, these blooms seem to transport about 20 percent of the total annual carbon flux to the bottom of the ocean. They do it in a single big pulse in the July-August time period. This is a pretty big chunk of carbon going to the bottom, and it’s available for feeding the food web. What doesn’t get eaten removes carbon from the atmosphere, and that CO2 is now trapped in the deep ocean for millennia.

e360: Since these blooms occur in the deep ocean what has been the challenge of studying them?

Villareal: Money is the source of all problems in marine science. Because the ocean is so big and much of it is so remote it just takes a lot of resources to get out there. Ships are expensive and once you get there you want to make sure you have adequate resources, a good team to do something that is actually meaningful. So we have teams of people that specialize in various aspects so we have a lot of talent to bring to the problem.

A research vessel can cost $30,000 to $50,000 a day. And the study sites I’m going to in the north Pacific are about three days north of Hawaii. We’re talking about $180,000 just to get to the party. And then you’re spending 10 days out there and now you’re looking at half a million dollars. It can be a challenge to get out there every year.

e360: Then you have to hope conditions are right for what you want to study.

Villareal: That’s right, as many of these diatom processes are time-specific. I have to get out there at the right time of year, particularly for these processes that lead to these massive diatom blooms – those diatom dust bunnies. When the diatom dust bunnies head to the bottom they do it at very specific times of year. It’s about a 60- to 90-day window.

We’ve had such a difficult time being at the right time and right place to study them. And then you just get a snapshot of a process that may be
We can send the Wave Gliders back out there and do surveys over time.
going on for a week or a month. So you capture one piece of it. What is almost impossible to get is to observe the conditions before the bloom starts. That has just been completely impractical to address.

e360: But that is going to change with your use of the Wave Gliders. What impact will access to those robots have on your research?

Villareal: Well, it’s going to be enormous because for the first time we can get out there and just sit if we need to. The Wave Gliders are a little slow so it will take us a month or so to get to the study site and a month to get back, but that gives us another four months to go up there and just hang out. We can do surveys back and forth across the subtropical front, and we can sit there and wait for blooms to develop. Then we can send the Wave Glider back there and do surveys over time, observe the change in dynamics, what the players are in this process, and what is responsible for the signal that causes the bloom. So when we get ship-time to go out there we’ll have a much better idea of what to be focusing on.

e360: What are some of the challenges of using robots for remote research?

Villareal:Money. They’re much cheaper than ships but they’re not free. Once you get the glider out there, there are challenges in instrumenting the glider to measure the right things. When you’re doing remote sensing, you only can measure what you came out to measure, and if you picked the wrong instrument you can miss something completely. I really need to count phytoplankton to see what’s in the water. And that requires optical

MORE FROM YALE e360

A Leading Marine Biologist
Works to Create ‘Wired Ocean’

Creating a Wired Ocean
Scientist Barbara Block uses satellite tags on thousands of sharks, bluefin tuna, and other marine predators to better understand their life cycles and, she hopes, to enlist public support to help protect these threatened creatures.
READ MORE
systems and optical systems are particularly prone to fouling, which creates a lot of uncertainty in the data stream. You have to keep the instruments calibrated so you can trust the data.

The way I want to approach this is as if you were NASA and this is a mission, so we don’t have to relearn the hard lessons NASA learned about sending something out there you’re never going to see again. But we do get the gliders back, which is an advantage of working on planet Earth.

e360: Just as remote spacecraft have revolutionized our understanding of the cosmos, do these robots have the potential to do something similar for the oceans?

Villareal: I think so. There are all sorts of wild robotic systems under development. For instance, I’ve seen a demonstration of a robot sailing vessel that transforms at the push of a button into a torpedo that can dive under the ocean. That’s pretty cool.



POSTED ON 11 Nov 2013 IN Biodiversity Climate Oceans Pollution & Health Science & Technology Water Asia 

POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


ABOUT THE AUTHOR
Todd Woody, who conducted this interview for Yale Environment 360, is an environmental and technology journalist based in California who writes for The New York Times, Quartz, and other publications. He previously was an editor and writer at Fortune and Forbes. For Yale Environment 360, he has interviewed entrepreneur Billy Parish about "crowdfunding" of solar projects and Anand Shah about technology that is bringing clean water to India.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


The Case for a Climate Goal
Other Than Two Degrees Celsius

Scientists and climate negotiators have largely agreed that limiting global warming to no more than 2 degrees Celsius is an important goal. But political scientist David Victor disagrees, arguing that the benchmark is too simplistic and should be abandoned in favor of other indicators.
READ MORE

Beyond Treaties: A New Way of
Framing Global Climate Action

As negotiators look to next year’s UN climate conference in Paris, there is increasing discussion of a new way forward that does not depend on sweeping international agreements. Some analysts are pointing to Plan B — recasting the climate issue as one of national self-interest rather than global treaties.
READ MORE

How Norway and Russia Made
A Cod Fishery Live and Thrive

The prime cod fishing grounds of North America have been depleted or wiped out by overfishing and poor management. But in Arctic waters, Norway and Russia are working cooperatively to sustain a highly productive — and profitable — cod fishery.
READ MORE

Peak to Peak: An Intimate Look at
The Bighorn Sheep of the Rockies

The third-place winner of the Yale Environment 360 Video Contest focuses on a herd of bighorn sheep in Montana and features remarkable scenes of lambs as they gambol along the slopes of the northern Rockies. Produced by Jeremy Roberts, the video follows a field biologist as he monitors the sheep and talks about the possible impact of climate change on the animals’ future.
READ MORE

Can Carbon Capture Technology
Be Part of the Climate Solution?

Some scientists and analysts are touting carbon capture and storage as a necessary tool for avoiding catastrophic climate change. But critics of the technology regard it as simply another way of perpetuating a reliance on fossil fuels.
READ MORE

 

MORE IN Interviews


The Case for a Climate Goal
Other Than Two Degrees Celsius

by diane toomey
Scientists and climate negotiators have largely agreed that limiting global warming to no more than 2 degrees Celsius is an important goal. But political scientist David Victor disagrees, arguing that the benchmark is too simplistic and should be abandoned in favor of other indicators.
READ MORE

He's Still Bullish on Hybrids,
But Skeptical of Electric Cars

by kay mcdonald
Former Toyota executive Bill Reinert has long been dubious about the potential of electric cars. In an interview with Yale Environment 360, he talks about the promise of other technologies and about why he still sees hybrids as the best alternative to gasoline-powered vehicles.
READ MORE

How to Make Farm-to-Table
A Truly Sustainable Movement

by diane toomey
Chef Dan Barber says the farm-to-table movement that he helped build has failed to support sustainable agriculture on a large scale. To do that, he says in a Yale Environment 360 interview, we need a new way of looking at diverse crops and the foods we eat.
READ MORE

The Case for a Moratorium
On Tar Sands Development

by ed struzik
Ecologist Wendy Palen was one of a group of scientists who recently called for a moratorium on new development of Alberta’s tar sands. In a Yale Environment 360 interview, she talks about why Canada and the U.S. need to reconsider the tar sands as part of a long-term energy policy.
READ MORE

How Drones Are Emerging
As Valuable Conservation Tool

by crystal gammon
Lian Pin Koh believes drones can be a key part of conservation efforts, particularly in remote regions. In a Yale Environment 360 interview, he talks about how his project, ConservationDrones, is promoting the use of drones for everything from counting orangutans to stopping poaching.
READ MORE

Making Farm Animal Rights
A Fundamental Green Issue

by marc gunther
As president of the Humane Society of the United States, Wayne Pacelle has pushed the animal welfare group into areas that directly impact the environment. In an interview with Yale Environment 360, he talks about how what we eat, how we raise our food, and how we treat farm animals are basic conservation issues.
READ MORE

Where Will Earth Head
After Its ‘Climate Departure’?

by diane toomey
Will the planet reach a point where its climate is significantly different from what has existed throughout human history, and if so, when? In an interview with Yale Environment 360, biogeographer Camilo Mora talks about recent research on this disquieting issue and what it means for the coming decades.
READ MORE

How A Small College Launched
Divestment from Fossil Fuels

by diane toomey
Unity College in Maine was the first in the U.S. to divest all fossil fuel holdings from its endowment. In an interview with Yale Environment 360, Unity president Stephen Mulkey talks about why he sees this groundbreaking move as an ethical decision and an extension of the college’s mission.
READ MORE

Putting San Francisco
On the Road to Zero Waste

by cheryl katz
For two decades, Jack Macy has spearheaded San Francisco’s efforts to become a global leader in recycling. In an interview with Yale Environment 360, he talks about how San Francisco has engaged the public in a recycling crusade that has resulted in the city reusing or composting 80 percent of its garbage.
READ MORE

Examining How Marine Life
Might Adapt to Acidified Oceans

by elizabeth grossman
In an interview with Yale Environment 360, marine biologist Gretchen Hofmann discusses how well mollusks and other shell-building organisms might evolve to live in increasingly corrosive ocean conditions caused by soaring CO2 emissions.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 PHOTO GALLERY

“Peter
Photographer Peter Essick documents the swift changes wrought by global warming in Antarctica, Greenland, and other far-flung places.
View the gallery.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

OF INTEREST



Yale