14 May 2014: Interview

Examining How Marine Life
Might Adapt to Acidified Oceans

In an interview with Yale Environment 360, marine biologist Gretchen Hofmann discusses how well mollusks and other shell-building organisms might evolve to live in increasingly corrosive ocean conditions caused by soaring CO2 emissions.

by elizabeth grossman

As the world’s oceans grow more acidic from increased absorption of atmospheric carbon dioxide, marine scientists are confronting a key question: How well can organisms like mollusks, crustaceans, and corals adapt to these more corrosive conditions? One of the leading authorities in this field is University of California, Santa Barbara marine biologist Gretchen Hofmann. Her work in recent years has shown, in fact, that some sea organisms that build shells do seem to have some ability to acclimate to more acidic waters.

But in an interview with Yale Environment 360 contributor Elizabeth Grossman, Hofmann cautions that this adaptive capacity has its limits and
Gretchen Hofmann
Gretchen Hofmann
that the continuing burning of fossil fuels could push ocean acidity past a tipping point, rendering some mollusks and other organisms unable to construct shells. Studying sea urchins and other creatures from California to Antarctica, Hofmann and her laboratory are examining the genetic changes that enable marine life to adapt to more hostile ocean conditions, including acidic waters and higher temperatures. Hofmann says her research also is seeking to identify regions of the global oceans that could serve as refuges for shell-building marine life as the seas become more acidic.

Yale Environment 360: Could you talk about your current research and why what happens to marine species as oceans become more acidic is
What is the adaptive capacity of marine organisms in the face of a rapidly changing ocean?”
important beyond the world of marine science?

Gretchen Hofmann: The biggest-picture component we’re interested in is whether organisms and populations can adapt to coming environmental changes. This is an important question for lots of different reasons and species, whether you’re talking about plants or fish. As the environment rapidly changes, we may be outstripping the physiological and biological capacity of today’s organisms to tolerate tomorrow’s conditions. And so our research addresses that issue specifically: What is the adaptive capacity of marine organisms in the face of a rapidly changing ocean?

The second thing we’re doing is trying to look at things together, at multiple factors changing at the same time — pH changing as temperature changes. We’re trying to more accurately look at these environmental complexities.

e360: How are marine species responding specifically to ocean acidification? Is there any evidence that they will be able to change in ways that allow them to thrive under these changing conditions?

Hofmann: Some of the work that we’ve been doing in the lab directly addresses the question: Can organisms adapt? Can evolutionary adaptation respond to ocean acidification? Mostly working with marine invertebrates like the sea urchin, what we’ve found is that there are populations of sea urchins on the West Coast that appear to have the genetic diversity to, at least right now, respond to acidic conditions in the ocean.

To answer this question you have to step back and think about the fact that organisms are adapted to the environment that they live in. The specific oceanography of the West Coast of the U.S. has a process we call upwelling, where winds blow off the ocean and bring deep, cold, CO2-rich water up. That water is low pH [more acidic] water. With the sensors we’ve had out, we’ve learned over time that this really acidic water is bathing the organisms near shore. So to some extent over a pretty long period of time
Some organisms have the capacity to adapt, but as a biologist you have to ask yourself, 'How far can they go?'”
these organisms have gotten used to low pH water. There’s probably some [natural] selection going on.

We’ve started examining that and found that in northern California, where waters tend to have more upwelling, these organisms have a different genetic profile than those elsewhere — than those in southern California — and the parents are able to confer that genetics to their babies. So the progeny that have fathers from the north tend to be tougher in the face of low pH conditions. So it matters who your daddy is in these things.

So in some ways evolution can buy us time, we think. Some organisms have the capacity to adapt, but as a biologist you have to ask yourself, “How far can they go?” We don’t know if this adaptive capacity can be sustained in low pH water for really long periods of time. Evolution can come to the rescue but probably can’t go on forever. You can say these organisms have responded to the changing environment because they’re used to a variable environment, but some of the biology they do, like calcification [to form shells], is dependent on the chemistry of what’s in the water and it’s unlikely that they can adapt their way out of not having water that doesn’t support calcification anymore. I think evolution buys us time. How much, we don’t know.

e360: Can you tell us why you’ve also been working in Antarctica?

Hofmann: The reason we’re studying the Antarctic is because the water is so cold it holds a lot of CO2 and it’s probably the most vulnerable to low pH effects of future acidification. So we’ve been working down there through the United States Antarctic Program. Part of what I did when I started working in this area is that I chose organisms that I thought would help us answer basic questions, but also started focusing on ecosystems that we wanted to prioritize. We felt there were ecosystems that the climate modelers told us would be first in time to experience ecologically deleterious conditions, and so we chose Antarctica and the West Coast of the U.S.

e360: Are we on what seems like an unstoppable course of continuing ocean acidification?

Hofmann: We have some committed climate change to face. We’ve committed to these technologies for releasing CO2 into the atmosphere
There’s not enough baking soda in the world to dump into the water to change things.”
and have a certain amount of CO2 increase that we’re going to have to deal with until we change the way we do business. There are a lot of engineering solutions that people are looking at right now, but geo-engineering solutions to change the pH of the ocean just are not going to apply. There’s not enough baking soda in the world to dump into the water to change things.

But there are some management things we can consider. We can look at coastal ecosystems, for example, that are hit by multiple stressors. Coral reefs are affected by environmental impacts like ocean acidification, but also by inputs from the land. So as humans we can try to make decisions to make life as good for these ecosystems as we go through this period of anthropogenic change. That’s going to require a lot of will on our part as community members, humans, and decision-makers.

The other thing — and as scientists we always say this — but we need more information. One of the things we’re learning is about natural variation: what the pH and carbonate chemistry is like around different reefs and along the California coast. This tells us a couple of very important things.

If we find a place with lots of natural variation we might say that is an adaptation hotspot, so we might want to study and protect that place because the organisms there are already evolving the genes to adapt. Alternatively, we might learn that there are places that don’t change that much and where the pH is really great and the calcification is really happy, so that we need to preserve that place as a calcification reserve or refuge from future stressors as a safe harbor.

This comes down to humans having the will to get the information and having the will to act.

e360: Why do these changes matter to life on land?

Hofmann: I’m from the middle of the country. I grew up in Wyoming and Colorado so I really understand that question. First, the microscopic


Scientists Focus on Polar Waters
As Threat of Acidification Grows

Polar Ocean Acidification
A sophisticated and challenging experiment in Antarctica is the latest effort to study ocean acidification in the polar regions, where frigid waters are expected to feel most acutely the impacts of acidic conditions not seen in millions of years.
plants, the phytoplankton in the ocean, create about half of the oxygen that we use on this planet, just with their own metabolism. So the ocean is directly tied to the quality of our atmosphere.

The second thing that’s really important is food security. As we watch these changes around the planet, we know that lots of things can happen biologically. One of the things we know is that there will be changes in food webs. There can be big losses with fish in the ocean not having their food sources, so that a particular fishery doesn’t do as well and isn’t available to us anymore. There may be a slow degradation, but it could also be that populations will come to a tipping point where there is a cataclysmic change in the biology and ecology of that species so that their reproduction fails, and they migrate away and they’re just gone.

There’s also the valuing of nature, valuing the beautiful ocean wilderness we have on all coasts of the United States. In the same way we value the Grand Canyon and Yosemite National Park or Yellowstone, we should think of these ocean wildernesses and protect them.

e360: What else should we be thinking about in terms of this research?

Hofmann: One of the things I really stress is the future generations of scientists we need to train. I work with a lot of undergraduates, and their future planet has got some problems, but they’re inspired to do the hard work to understand what’s happening to the planet and try to preserve it. So the human and science capital is critical.

POSTED ON 14 May 2014 IN Biodiversity Biodiversity Climate Climate Oceans Oceans Science & Technology Antarctica and the Arctic Asia North America 


It is misleading to say oceans are becoming "more acidic." In some situations, they may have become slightly less alkaline. More acidic and less alkaline are not the same. For example, it is impossible for an alkaline solution to dissolve pteropod shells or any other kind of calcium carbonate.

The oceans are strongly alkaline, and have high alkaline buffering capacity. I don't know of any situation where oceans have become actually acidic (pH < 7.0) by absorbing atmospheric CO2. What, specifically, was the pH that the author measured of the "high CO2", "more acidic" seawater, and where was it measured?

The use of dodgy rhetoric in scientific literature fosters suspicion and skepticism in the scientific conclusions of the research, and should be avoided. This misleading rhetoric convention appears in all three articles of this issue. What is the source of this practice? It deserves to be investigated.

And it is not a situation of "meme chose." Calcium carbonate will simply not dissolve in an alkaline solution.
Posted by Miner49er on 15 May 2014

"There are a lot of engineering solutions that people are looking at right now, but geo-engineering solutions to change the pH of the ocean just are not going to apply. There’s not enough baking soda in the world to dump into the water to change things."

I beg to differ. Fortunately for the planet there are many orders of magnitude more "baking soda" and other base minerals than all of the CO2 and acidity we can emit. And Mother Nature will put these to very good use consuming all of our CO2 and acidity, as evidence from the last major CO2 transient event, the PETM, clearly shows. However, significant amounts of Prof Hofmann's biological adaptation would still be required given the 100 kyrs timeframe for Mother Nature to complete her CO2 mitigation via geochemistry.

So rather than dismissing the "baking soda" option, it would seem prudent to figure out ways to mimic and accelerate this proven, natural, process at some scale in the now likely event that other forms of CO2 mitigation and biological adaptation prove less than successful. At the very least Gretchen might consider adding "baking soda" to her OA refuges, since it is unclear how any spot in the surface ocean will become immune to OA effects otherwise. I'd point out that such tactics apparently work great in mitigating OA in saltwater aquaria:http://www.reefkeeping.com/issues/2002-05/sh/feature/
So why wouldn't this work at larger scales?

Posted by greg rau on 15 May 2014


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

Elizabeth Grossman is the author of Chasing Molecules: Poisonous Products, Human Health, and other books. Her work has appeared in Scientific American, Salon, The Washington Post, The Nation, Mother Jones, Grist, and other publications. In earlier articles for Yale e360, she explored how declining bee populations threaten global food security and how scientists are using zebrafish to assess chemical impacts.



How China and U.S. Became
Unlikely Partners on Climate

Amid tensions between the U.S. and China, one issue has emerged on which the two nations are finding common ground: climate change. Their recent commitments on controlling emissions have created momentum that could help international climate talks in Paris in December.

A New Global Tinderbox:
The World’s Northern Forests

Rapidly rising temperatures, changes in precipitation, and increased lightning strikes are leading to ever-larger wildfires in the northern forests of Alaska, Canada, and Siberia, with potentially severe ecological consequences.

How One African Village Learned
To Live with Its Wildlife and Prosper

The second runner-up in the Yale Environment 360 Video Contest tells the story of the residents of a forest village in central Mozambique who have helped create a tourist destination centered on an elephant population that once wreaked havoc in their community.

One Scientist’s Hopeful View
On How to Repair the Planet

Ecological crises may be piling up in a seemingly hopeless cascade, but Swedish scientist Johan Rockström says the next few decades offer an unparalleled opportunity to undo the damage.

What Pope Francis Should Say
In His Upcoming UN Address

Pope Francis will speak to the United Nations General Assembly on Sept. 25 about poverty, the environment, and sustainable development. In a Yale Environment 360 forum, seven leading thinkers on the environment and religion describe what they would like to hear the pope say.


MORE IN Interviews

One Scientist’s Hopeful View
On How to Repair the Planet

by diane toomey
Ecological crises may be piling up in a seemingly hopeless cascade, but Swedish scientist Johan Rockström says the next few decades offer an unparalleled opportunity to undo the damage.

Probing the Rich Inner Lives
Of the Planet’s Wild Animals

by diane toomey
Scientist Carl Safina has examined our steadily evolving understanding of the complex interactions among the more social members of the animal world. In an interview with Yale Environment 360, he talks about why it’s vital to our humanity to empathize more deeply with wild creatures.

The High Environmental Cost
Of Illicit Marijuana Cultivation

by diane toomey
Marijuana growers are ravaging forests in northern California to produce their lucrative crop. In a Yale Environment 360 interview, biologist Mary Power talks about the massive ecological footprint of marijuana growing and why nationwide legalization could help alleviate it.

How Can We Make People
Care About Climate Change?

by richard schiffman
Norwegian psychologist Per Espen Stoknes has studied why so many people have remained unconcerned about climate change. In a Yale Environment 360 interview, he talks about the psychological barriers to public action on climate and how to overcome them.

Why a Leading Indian Politician
Is Now an Environmental Hawk

by christian schwagerl
Former Environment Minister Jairam Ramesh believes the “cult” of unfettered economic growth has been ruinous for India’s environment. In an interview with Yale Environment 360, he talks about his vision of “green growth,” which he says is essential for his nation’s future.

Cloning a Mammoth: Science
Fiction or Conservation Tool?

by diane toomey
Biologist Beth Shapiro has published a new book that looks at the many questions – both technical and ethical – surrounding any attempt to revive extinct species. In a Yale Environment 360 interview, she explains why she believes new genetic technology could benefit critical ecosystems.

A New Face at the Helm of
The Oldest U.S. Green Group

by diane toomey
The Sierra Club has chosen Aaron Mair as its president, the first African-American to lead the largest U.S. environmental organization. In an interview with Yale Environment 360, he talks about the lack of diversity in the environmental movement and what can be done to change that.

A Grassroots Effort to Save
Africa’s Most Endangered Ape

by john c. cannon
The Cross River gorilla population in equatorial Africa has been pushed to the brink of extinction. In a Yale Environment 360 interview, a Nigerian scientist working to save the gorillas describes how local villagers are vital to protecting these apes.

How British Columbia Gained
By Putting a Price on Carbon

by diane toomey
Seven years ago, British Columbia became the first jurisdiction in North America to adopt an economy-wide carbon tax. In a Yale Environment 360 interview, economics expert Stewart Elgie explains how the tax helped cut the province’s fossil fuel use without hurting its economy.

Oklahoma’s Clear Link Between
Earthquakes and Energy Boom

by diane toomey
Oklahoma officials this week said oil and gas activity was the likely cause of the stunning increase in earthquakes in the state. In an interview with Yale Environment 360, Oklahoma geologist Todd Halihan talks about what has caused this growing problem and what can be done about it.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America


Photographer Robert Wintner documents the exquisite beauty and biodiversity of Cuba’s unspoiled coral reefs.
View the gallery.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video, chronicles a Chinese village’s fight against a polluting chemical plant. It was nominated for a 2011 Academy Award for Best Documentary Short.
Watch the video.

header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.


A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.