16 Mar 2015: Report

Designing Wetlands to Remove
Drugs and Chemical Pollutants

Drinking water supplies around the world often contain trace amounts of pharmaceuticals and synthetic compounds that may be harmful to human health. One solution being tried in the U.S. and Europe is to construct man-made wetlands that naturally degrade these contaminants.

by carina storrs

Rising high in the San Bernardino Mountains in Southern California, the Santa Ana River flows westward through cities and towns with a total population of nearly 5 million. Along the way, it receives so much sewage that 90 percent of its flow during the dry summer season is effluent, which
Prado wetlands
Carina Storrs
A series of ponds helps remove medical drugs and other water contaminants in the Prado Wetlands in Southern California.
is cleaned again and again at several dozen wastewater treatment plants.

Near the end of its 96-mile course, the Santa Ana comes to a seeming standstill in the Prado Wetlands. Covering 425 acres, the wetlands site — designed by engineers — consists of a series of rectangular ponds, through which the river’s gentle flow is controlled by dam-like weir boxes. It takes about a week for water to traverse the wetlands, during which time cattails and other vegetation help remove nitrogen, phosphorous, and other contaminants.

Today, the Prado Wetlands, which are operated by the Orange County Water District, are part of a new project to remove a different kind of pollution: the residues of medical drugs and synthetic organic compounds, such as herbicides, that are found in small concentrations in rivers but that may
Sunlight and bacteria degrade residues of antibiotics, anti-inflammatories, sex hormones, and other drugs and chemicals.
affect endocrine activity, metabolism, and development in humans. A year-old pilot project at the Prado Wetlands channels river water through three ponds, each about the length of five Olympic swimming pools. Sunlight and bacteria degrade residues of antibiotics, anti-inflammatories, sex hormones, and other drugs and man-made chemicals before the Santa Ana reaches Anaheim, 20 miles downstream. There the river provides the drinking water for 2.5 million people in northern Orange County.

Concern has risen about the potential danger that may come from drinking water tainted by small concentrations of pharmaceuticals that pass through our bodies and are flushed down the toilet, not to mention other synthetic compounds discharged by agriculture and industry. Research has shown that endocrine disruptors and antidepressants may harm reproduction in fish, and endocrine-disrupting compounds also have been linked to adverse health effects in humans. Scientists also fear that the persistence of antibiotics in the environment could promote the development of antibiotic-resistant bacteria.

Currently, there are no U.S. regulations for medical drugs under the Safe Drinking Water Act, and only a few for the residues from consumer products. However, the U.S. Environmental Protection Agency’s Contaminant Candidate List, which establishes what chemicals should be evaluated for possible regulation, in 2009 included several endocrine disruptors called estradiols, found in products such as birth control pills. The list also included erythromycin, an antibiotic. The European Commission placed two types of estradiols and a painkiller called diclofenac on a similar watch list in 2013.

As a result of growing concerns, scientists and government authorities in the U.S., Europe, and elsewhere are experimenting with the use of so-called “constructed wetlands” to remove these pharmaceuticals and chemicals from effluent released by wastewater treatment plants. Constructed wetlands have been used for several decades in the United States and Europe to remove nitrogen and other traditional pollutants from wastewater. In the U.S., roughly 250 constructed wetlands have been built to treat effluent from wastewater treatment plants, and in Europe thousands of constructed wetlands exist, mainly for treating wastewater from smaller communities.

”There are a lot of potential applications of this technology to give communities a more cost-effective treatment than traditional approaches,”
Tests reveal many of the compounds survive passage through wastewater treatment plants.
says Larry Barber, a researcher at the U.S. Geological Survey (USGS).

About 10 years ago, thanks to the development of sensitive detection methods, it became possible to measure trace levels of these compounds in surface water bodies such as rivers. Tests reveal that many of the compounds survive passage through wastewater treatment plants. The EPA is currently investigating how well facilities that treat drinking water remove pharmaceutical products, and whether retrofitting these plants with steps such as reverse osmosis could improve removal. But there are financial and practical drawbacks. Reverse osmosis systems are expensive, and constructed wetlands need tens to hundreds of acres to process large volumes of wastewater.

One of the early indications that constructed wetlands could help treat pharmaceuticals and other synthetic contaminants came from a study of nonylphenol, which is widely present in laundry detergents. Nonylphenol is an endocrine disruptor and has been shown to have potent toxicity in fish. When a research team led by the USGS was testing the ability of a small-scale wetlands system outside of Phoenix, Arizona, to diminish nitrogen levels in the wastewater treatment effluent, they noticed that
Tres Rios wetlands
Tres Rios Wetlands
Besides helping to remove chemicals, the Tres Rios Wetlands in Arizona provide wildlife habitat.
nonylphenol and its breakdown products were also reduced, some by 90 percent.

Since those tests, the team has built a full-scale, 380-acre constructed wetlands at the site, called the Tres Rios Wetlands. It is one of the largest in the U.S. and provides water for irrigation and wildlife habitat. It also has three main ponds that remove chlorine, heavy metals, herbicides, nitrogen, and nonylphenol.

Numerous studies have shown the effectiveness of constructed wetlands in removing such contaminants. A 2004 study of the Prado Wetlands found that the site helped reduce levels of ibuprofen and organic chemicals found in pesticides and flame retardants. Scientists in Spain have reported that natural systems efficiently removed a number of anti-inflammatory drugs and pesticides.

Still, many compounds, including some estradiols and antibacterials, are more resistant to treatment in constructed wetlands, with their levels dropping by only about half. "In my mind you definitely want more than 50 percent removal, or why bother?" says David Sedlak, a professor of environmental science and engineering at the University of California, Berkeley.

Sedlak and his collaborators are behind the pilot project at the Prado Wetlands. Inspired by experiments showing that drugs are degraded by sunlight as they move down a river, they worked on developing a new type of constructed wetland design specifically to remove these compounds.

In typical constructed wetland designs, weedy aquatic plants are the focal point, because of the myriad ways they break down contaminants. But they also overshadow, literally, the contribution of sunlight. So about a year ago,
At the Texas project, water will first travel through weedy ponds to remove nitrogen.
Sedlak’s team started testing what they call open-water units at the Prado Wetlands. Now, before wastewater enters the series of cattail-filled ponds, it drifts through one of three large ponds over the course of a day or two. To prevent plant growth, engineers used a simple approach: They put down a tarp along the bottom of the ponds.

Although the researchers are still in the first phase of data collection, the new ponds at the Prado Wetlands seem to work as well as a similar pilot-scale system in Discovery Bay near San Francisco that has been operating for about seven years. Early data suggest that open-water units at Discovery Bay remove 90 percent of sulfamethoxazole, an antibiotic often resistant to removal in waste treatment plants. An unexpected benefit is that a layer of algae and bacteria that grows on the tarp-covered pond bottoms appears to bind and degrade compounds.

Ponds similar to open-water units will also be incorporated into the Brazos River Demonstration Wetland, a 12-acre site that engineers started building in January in Waco, Texas. Construction should finish later this year. The project marks the first constructed wetlands designed to optimize the breakdown of drugs while also removing traditional contaminants found in wastewater treatment plant discharge. Brazos will not rely solely on photodegradation to remove compounds. Water will travel through weedy ponds to remove nitrogen and then through subsurface wetlands with very low oxygen levels to help strip out chemicals.

Barber, the USGS geologist who worked on the Tres Rios wetlands in Arizona and also helped design the Brazos site, hopes that what


New Desalination Technologies
Spur Growth in Recycling Water

Desalination technology
Desalination has long been associated with one process — turning seawater into drinking water. But a host of new technologies are being developed that not only are improving traditional desalination but opening up new frontiers in reusing everything from agricultural water to industrial effluent.
they learn will improve design of small constructed wetlands nationwide, as well as larger wetlands that treat wastewater treatment effluent.

Recent research in Europe supports the idea that hybrid constructed wetlands — a combination of surface-level and subsurface ponds that do not freeze in colder climates — most effectively remove endocrine disruptors and other compounds. Environmental agencies in countries such as Denmark, Austria, and Germany currently provide guidelines and set standards for removal of nitrogen, phosphorus, and other contaminants in constructed wetlands. Researchers do not expect official guidelines on levels of drugs and other micro-contaminants until those substances are regulated.

Even without regulations, some communities are willing to invest in constructed wetlands, as evidenced by the Brazos site. “It’s about being proactive in terms of the right way to do water reuse,” says Barber.

POSTED ON 16 Mar 2015 IN Oceans Pollution & Health Science & Technology Water Asia Europe North America 


Compelling research. Our Northern California environmental partners with organic rice lands (also constructed wetlands with weir boxes) perform these happy duties of cleaning river water from the Sacramento River. Rice is a river of grass, and like all wetlands and the everglades, it too scavenges nitrate returning clean water to the river. Constructed organic rice wetlands intercept contaminated river water before it reaches towns & cities downstream. The cleaned water travels further down to the Sacramento-San Joaquin Delta, the San Francisco Bay and ultimately the Pacific Ocean. This helps support such fragile endangered species as the Delta Smelt. The smelt are sensitive to nitrates and ammonias produced by water treatment plants. the constructed wetlands help dilute the potent elements disrupting the fish ecosystem and lifecycle.

Our environmental partners at the Klamath Wildlife Refuge similarly clean water through their Walking Wetlands programs. Walking wetlands marry agriculture with water quality. For further information about on constructed wetlands in organic farming in Northern California and beyond check-out this PBS segment on youTube.


Posted by Pacific Flyway Field Station on 19 Mar 2015

The way I see it, these man-made wetlands are nothing more than a more 'picturesque' water treatment plant. Still, I suppose they are an improvement over unsightly holding tanks spread out over multiple acres.
Posted by Enviro Equipment Inc. on 02 Apr 2015

This is a great idea and definitely seems like it could work!
Posted by Ifrah Khan@GreenGlobalTravel on 16 Jun 2015


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

carina storrsABOUT THE AUTHOR
Carina Storrs is a freelance journalist based in New York. She writes about ecology, biology, and medicine. Her work has appeared in The New York Times, Scientific American, Discover, and The Scientist.



Can Uber-Style Buses Help
Relieve India's Air Pollution?

India’s megacities have some the deadliest air and worst traffic congestion in the world. But Indian startups are now launching initiatives that link smart-phone apps and private shuttle buses and could help keep cars and other motorized vehicles off the roads.

How Ocean Noise Pollution
Wreaks Havoc on Marine Life

Marine scientist Christopher Clark has spent his career listening in on what he calls “the song of life” in the world’s oceans. In an interview with Yale Environment 360, he explains how these marine habitats are under assault from extreme—but preventable—noise pollution.

In Flint Crisis, A New Model
For Environmental Journalism

Curt Guyette is an investigative reporter who dug deeper into the Flint water crisis. In an interview with Yale Environment 360, he explains his work as a journalist employed by a Michigan nonprofit and how it could be a model for in-depth, local reporting on the environment.

Indonesian Coal Mining Boom
Is Leaving Trail of Destruction

Since 2000, Indonesian coal production has increased five-fold to meet growing domestic demand for electricity and feed export markets in Asia. The intensive mining is leading to the clearing of rainforest and the pollution of rivers and rice paddies.

For Storing Electricity, Utilities
Are Turning to Pumped Hydro

High-tech batteries may be garnering the headlines. But utilities from Spain to China are increasingly relying on pumped storage hydroelectricity – first used in the 1890s – to overcome the intermittent nature of wind and solar power.


MORE IN Reports

How to Restore an Urban River?
Los Angeles Looks to Find Out

by jim robbins
Officials are moving ahead with a major revitalization of the Los Angeles River – removing miles of concrete along its banks and re-greening areas now covered with pavement. But the project raises an intriguing question: Just how much of an urban river can be returned to nature?

How Growing Sea Plants Can
Help Slow Ocean Acidification

by nicola jones
Researchers are finding that kelp, eelgrass, and other vegetation can effectively absorb CO2 and reduce acidity in the ocean. Growing these plants in local waters, scientists say, could help mitigate the damaging impacts of acidification on marine life.

Vanishing Act: What’s Causing Sharp
Decline in Insects and Why It Matters

by christian schwägerl
Insect populations are declining dramatically in many parts of the world, recent studies show. Researchers say various factors, from monoculture farming to habitat loss, are to blame for the plight of insects, which are essential to agriculture and ecosystems.

For India’s Captive Leopards,
A Life Sentence Behind Bars

by richard conniff
As sightings of leopards in populated areas increase, Indian authorities are trapping the animals and keeping them in captivity — often in small cages without adequate food or veterinary care. The real solution, wildlife advocates say, is to educate the public on how to coexist with the big cats.

A Tiny Pacific Nation Takes the
Lead on Protecting Marine Life

by emma bryce
Unhappy with how regional authorities have failed to protect fish stocks in the Western Pacific, Palau has launched its own bold initiatives – creating a vast marine sanctuary and conducting an experiment designed to reduce bycatch in its once-thriving tuna fishery.

A Rather Bizarre Bivalve Stirs
Controversy in the Puget Sound

by ben goldfarb
The Asian market for the odd-looking giant clams known as geoducks has spawned a growing aquaculture industry in Washington's Puget Sound. But coastal homeowners and some conservationists are concerned about the impact of these farming operations on the sound’s ecosystem.

At 1,066 Feet Above Rainforest,
A View of the Changing Amazon

by daniel grossman
A steel structure in the Amazon, taller than the Eiffel Tower, will soon begin monitoring the atmosphere above the world’s largest tropical forest, providing an international team of scientists with key insights into how this vital region may be affected by global warming.

In Iowa, A Bipartisan Push to
Become Leader in Wind Energy

by roger real drouin
Thanks to state officials who have long supported renewables, Iowa now leads all U.S. states in the percentage of its energy produced from wind. Big companies, including Facebook and Google, are taking notice and cite clean energy as a major reason for locating new facilities there.

Hard-Pressed Rust Belt Cities
Go Green to Aid Urban Revival

by winifred bird
Gary, Indiana is joining Detroit and other fading U.S. industrial centers in an effort to turn abandoned neighborhoods and factory sites into gardens, parks, and forests. In addition to the environmental benefits, these greening initiatives may help catalyze an economic recovery.

As Drought Grips South Africa,
A Conflict Over Water and Coal

by keith schneider
Facing one of the worst droughts in memory, South Africa’s leaders have doubled down on their support of the water-intensive coal industry. But clean energy advocates say the smartest move would be to back the country’s burgeoning wind and solar power sectors.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.


An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

Ugandan scientists monitor the impact of climate change on one of Africa’s most diverse forests and its extraordinary wildlife.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.


A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.