06 Jul 2010: Report

High Above the Earth,
Satellites Track Melting Ice

The surest sign of a warming Earth is the steady melting of its ice zones, from disappearing sea ice in the Arctic to shrinking glaciers worldwide. Now, scientists are using increasingly sophisticated satellite technology to measure the extent, thickness, and height of ice, assembling an essential picture of a planet in transition.

by michael d. lemonick

After carbon dioxide, the substance most crucial in determining how climate change will play out over the next century and beyond isn’t a greenhouse gas — it’s the solid state of the molecule H20. Summer melt in the sea ice that covers the Arctic Ocean exposes heat-absorbing seawater to the sun, accelerating global warming in a phenomenon known as Arctic amplification. Summer melting in the land-based ice that covers Greenland is increasingly responsible for the sea-level rise that has already begun to endanger many thousands of miles of coastline. Glaciers moving more rapidly to the sea, in both Greenland and Antarctica, threaten to raise sea level even higher, while disappearing mountain glaciers around the world could choke off water supplies to many hundreds of millions of people.

That being the case, it’s crucial to know exactly what’s happening to the ice as the planet warms up. So it’s easy to understand why the European Space Agency was horrified when its ice-measuring CryoSat satellite failed on launch back in October 2005 — and that the agency was thrilled when CryoSat-2 lifted off successfully this April from the Baikonur Cosmodrome in Kazakhstan. The satellite is now in its shakedown phase, where scientists check out the instruments and solar panels, and it seems to be working perfectly. “There’s no precedent for such a rapid recovery,” says CryoSat Mission Scientist Mark Drinkwater. “We’re up there, collecting great data.”

ESA Antarctica
European Space Agency/Google
In this image, the white circle illustrates the area of Antarctica that satellites prior to the CryoSat-2 could not reach.
It’s not that ice-watchers have been flying blind since 2005. A virtual flotilla of satellites, some dedicated entirely to looking down on the planet’s white places and others only partly devoted to sensing ice, has been whirling overhead for more than three decades. The result has been an unbroken record of observations, starting with NASA’s Nimbus-7 satellite in 1978, showing such key phenomena as the steady, three-decade disappearance of Arctic sea ice. Since the late-1970s, NASA and space agencies from other nations have devised an array of detectors to measure ice from space, using wavelengths spanning the electromagnetic spectrum, from microwaves, to infrared, to visible light.

Just as cell phones, computers, DVD players, and other once-exotic devices have plummeted in price and soared in capability over the years, so have the electronics at the heart of high-flying satellites. The satellites’ vision has in effect become sharper, and the data they return richer in detail. Satellites have even managed to transcend light entirely: the GRACE satellite array now routinely measures changes in local gravity resulting from mass losses in ice sheets.

But each orbiter has a limited lifetime even when it’s working perfectly, and some break down prematurely. NASA’s ICESat — which used lasers to measure the height of ice formations and had already exceeded its expected five-year lifetime — stopped working last October. That’s potentially a huge problem, says Claire Parkinson, of NASA’s Goddard Spaceflight Center, because “we really want a continuous record.” The reason: ice-watchers don’t want to miss any unexpected events, such as the spectacular break-up of Antarctica’s Larsen B Ice shelf in 2002 or the extreme plunge in late-summer Arctic sea ice in 2007. Scientists also want to be sure that observations from different satellites can be calibrated against one another.

Each satellite technology has its strengths and weaknesses. To map out the constantly changing extent of ice covering the Arctic Ocean, for example, it would be ideal to take daily photographs, in ordinary, visible light, which provides the sharpest images. But since the Arctic and Antarctic are dark
Ice watchers don’t want to miss unexpected events, such as the breakup of Antarctica’s Larsen B Ice Shelf.
for months at a time, and frequently covered with clouds even when it’s light, Parkinson relies instead on passive microwave detectors. Molecules of H20 vibrate naturally, sending out pings of microwave energy whose wavelengths depend on whether they’re part of a liquid or are crystallized into ice. Satellites that can detect these pings — NASA’s Aqua satellite, for example — are one way climate scientists measure the extent of sea ice. They can even distinguish between ice that has frozen for the first time in a given winter and multi-year ice that has persisted through one or more summers: Older ice is less salty, and emits a subtly different mix of microwaves as a result.

Passive microwave detectors not only see through clouds and darkness. They also take in huge swaths of real estate with each pass, so it’s possible to get a snapshot of the entire Arctic many times a day. One of the most important ice trends picked up by passive microwave technology occurred along the rapidly warming western Antarctic Peninsula. There, oceanographer Sharon Stammerjohn of the University of California, Santa Cruz, used passive microwave satellite data to show that sea ice now blankets the Southern Ocean off the western Antarctic Peninsula three months less a year than it did in 1979.

The tradeoff, says Ron Kwok, at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., is that passive microwaves, while good at discriminating between ice and water, are too diffuse to provide a lot of detail. For that, observers prefer active radar, the same sort the military uses to look for enemy planes or missiles. The satellite shoots a radar beam down at the ground, then snags the beam on the rebound. The detail is fine enough, says Kwok, that “we can resolve cracks in the ice, characterize how the ice is moving.”

In 2007, for example, when Arctic sea ice dipped to its minimum late-summer extent to date, not all of the ice loss came from melting. “About ten percent,” he says, “was blown out by the wind through the gap between Greenland and Svalbard.” Satellite-borne active radar, otherwise known as imaging radar, was able to track that process.

ESA GOCE Satellite
European Space Agency
Launched in 2009, the European Space Agency’s GOCE satellite is mapping Earth’s permanent gravity field with unprecedented resolution.
Yet another class of instrument measures changes in ice volume rather than ice extent. The GRACE, or Gravity Recovery And Climate Experiment, was launched in 2002 to measure variations in local gravity around the Earth. The way it works is ingenious: GRACE is actually two identical satellites, orbiting in formation 220 kilometers (137 miles) apart. When they approach an area of excess mass — a mountain range, for example — the extra gravity tugs on the lead satellite, making it speed up a little and increasing the distance between the two. When the satellites approach a mass deficit, such as a crater, the leading satellite slows. By measuring the distance between the two orbiters constantly and precisely, scientists can calculate the Earth’s surprisingly lumpy gravity field with exquisite accuracy.

Mountains and craters don’t move, of course, unless a volcano erupts or a massive earthquake strikes. But ice does, either by sliding downhill as a glacier or by melting. And by flying over places such as Greenland and Antarctica several times each year, GRACE has watched as both places have lost ice around the edges — especially in Greenland, where about 200 cubic kilometers of ice have vanished every year, on average, since 2004. Data collected by GRACE satellites led to the discovery, announced in March, that the melting of Greenland’s massive ice sheet was spreading from the southern part of the country to the northwest coast.

A year ago, the European Space Agency launched its own gravity satellite called the Gravity field and steady-state Ocean Circulation Explorer (GOCE), which is making similar measurements with a different technology. Its planned lifetime is less than two years, so GOCE won’t be able to monitor long-term ice loss. It will, however, map the planet’s permanent gravity field with unprecedented resolution.

That’s crucial to the operation of yet another type of orbiting instrument known as an altimeter. As the name suggests, an altimeter measures the
The CryoSat-2 can measure not only the changing thickness of land ice but also that of sea ice.
satellite’s altitude above the surface — if that altitude changes over time due to rising sea level, say, or dwindling ice, a satellite altimeter can track that change down to the millimeter. It works similarly to an active microwave instrument, except that rather than looking at where the ice is and where it isn’t, an altimeter measures the surface’s height, by gauging how long it takes the beam to travel down and back.

NASA’s ICESat, which broke down last fall after six years in orbit, did its altimetry by laser. Before it malfunctioned, its instruments followed up on GRACE’s detection of mass loss in Greenland by measuring a physical thinning of the huge island’s seaward-flowing glaciers, and making similar measurements of retreating glaciers in West Antarctica. As recently as 2007, the Intergovernmental Panel on Climate Change’s Fourth Assessment Report declared that there wasn’t sufficient information available about changes in glacier and ice sheet dynamics to gauge their likely effect on sea level. Now, thanks in part to ICESat, that information is emerging.

The European Space Agency’s CryoSat-2 satellite uses radar rather than lasers, so its beam is less sharp and thus takes in a bigger, fuzzier patch of ice at a time. Like ICESat, CryoSat-2 can measure not only the changing


The Secret of Sea Level Rise:
It Will Vary Greatly By Region

Sea Rise
As the world warms, sea levels could easily rise three to six feet this century. But increases will vary widely by region, Michael Lemonick writes, with prevailing winds, powerful ocean currents, and even the gravitational pull of the polar ice sheets determining whether some coastal areas will be inundated while others stay dry.
thickness of land ice but also that of sea ice. Thinner first-year ice is easier to melt, so the amount of it relative to the thicker stuff makes a big difference when summer comes. By measuring “freeboard” — that is, the height of the ice above sea — CryoSat-2’s altimeter can differentiate between first-year ice and multi-year ice, because a thicker slab of ice floats higher in the water. That kind of information is important to Arctic ice experts, since a decline in thicker, multi-year sea ice sets the stage for more rapid melting in the future.

CryoSat-2’s projected lifetime is five years; by the time it runs out of steam, NASA is hoping to have ICESat-2 in orbit to replace its own defunct satellite. In the meantime, both agencies will be launching ice-detecting instruments aboard new satellites. And just as next year’s new crop of laptops and cell phones will outshine last year’s, these instruments will be more compact, powerful and feature-laden than their existing counterparts.

“This is a very exciting time for us,” says Drinkwater. “We’ve got six more already approved, so when we want to put the big picture together, we’ll have a lot of tools up there.”

POSTED ON 06 Jul 2010 IN Climate Climate Oceans Oceans Science & Technology Science & Technology Antarctica and the Arctic Europe 


A good article. One point though -- laser altimetry and radar altimetry are complementary. We wanted to get both IceSAT and CryoSat-2 at the same time. The laser ranges to snow on the surface of ice while the radar goes right on through to the ice surface underneath. Both are useful. Also, while lasers have a sharper view, as you put it, radars see through clouds. So complementary again.

It's a real pity IceSAT didn't make it -- they were carefully husbanding the resource but we couldn't launch quite fast enough.

Richard Francis
CryoSat Project Manager

Posted by Richard Francis on 06 Jul 2010

I can't help the feeling that we will have all this magnificent orbiting technology to record the self-imposed destruction of the cryosphere, and much of human civilization, due to our economic belief that mined material resources are "energy."

Cry Oh Sphere.

Posted by James Newberry on 10 Jul 2010

Comments have been closed on this feature.
michael d. lemonickABOUT THE AUTHOR
Michael D. Lemonick is the senior writer at Climate Central, a nonpartisan organization whose mission is to communicate climate science to the public. Prior to joining Climate Central, he was a senior writer at Time magazine, where he covered science and the environment for more than 20 years. He has also written four books on astronomical topics and has taught science journalism at Princeton University for the past decade. In other articles for Yale Environment 360, Lemonick has written about the impacts of climate change in the U.S. and projected sea level rise worldwide.



Northern Forests Emerge
As the New Global Tinderbox

Rapidly rising temperatures, changes in precipitation, and increased lightning strikes are leading to ever-larger wildfires in the northern forests of Alaska, Canada, and Siberia, with potentially severe ecological consequences.

Oil Drilling in Arctic Ocean:
A Push into Uncharted Waters

As the U.S. and Russia take the first steps to drill for oil and gas in the Arctic Ocean, experts say the harsh climate, icy seas, and lack of infrastructure means a sizeable oil spill would be very difficult to clean up and could cause extensive environmental damage.

Frustrated Tar Sands Industry
Looks for Arctic Export Route

With the Keystone XL and other pipeline projects running into stiff opposition, Alberta’s tar sands industry is facing growing pressure to find ways to get its oil to market. One option under consideration would be to ship the oil via an increasingly ice-free Arctic Ocean.

As Himalayan Glaciers Melt,
Two Towns Face the Fallout

For two towns in northern India, melting glaciers have had very different impacts — one town has benefited from flowing streams and bountiful harvests; but the other has seen its water supplies dry up and now is being forced to relocate.

Loss of Snowpack and Glaciers
In Rockies Poses Water Threat

From the Columbia River basin in the U.S. to the Prairie Provinces of Canada, scientists and policy makers are confronting a future in which the loss of snow and ice in the Rocky Mountains could imperil water supplies for agriculture, cities and towns, and hydropower production.


MORE IN Reports

For Storing Electricity, Utilities
Are Turning to Pumped Hydro

by john roach
High-tech batteries may be garnering the headlines. But utilities from Spain to China are increasingly relying on pumped storage hydroelectricity – first used in the 1890s – to overcome the intermittent nature of wind and solar power.

On Thin Ice: Big Northern Lakes
Are Being Rapidly Transformed

by cheryl katz
As temperatures rise, the world’s iconic northern lakes are undergoing major changes that include swiftly warming waters, diminished ice cover, and outbreaks of harmful algae. Now, a global consortium of scientists is trying to assess the toll.

The Haunting Legacy of
South Africa’s Gold Mines

by mark olalde
Thousands of abandoned gold mines are scattered across South Africa, polluting the water with toxics and filling the air with noxious dust. For the millions of people who live around these derelict sites, the health impacts can be severe.

The Sushi Project: Farming Fish
And Rice in California's Fields

by jacques leslie
Innovative projects in California are using flooded rice fields to rear threatened species of Pacific salmon, mimicking the rich floodplains where juvenile salmon once thrived. This technique also shows promise for growing forage fish, which are increasingly threatened in the wild.

A Delicate Balance: Protecting
Northwest’s Glass Sponge Reefs

by nicola jones
Rare and extensive reefs of glass sponges are found only one place on earth – a stretch of the Pacific Northwest coast. Now, efforts are underway to identify and protect these fragile formations before they are obliterated by fishing vessels that trawl the bottom.

As the Fracking Boom Spreads,
One Watershed Draws the Line

by bruce stutz
After spreading across Pennsylvania, fracking for natural gas has run into government bans in the Delaware River watershed. The basins of the Delaware and nearby Susquehanna River offer a sharp contrast between what happens in places that allow fracking and those that do not.

Will Tidal and Wave Energy
Ever Live Up to Their Potential?

by sophia v. schweitzer
As solar and wind power grow, another renewable energy source with vast potential — the power of tides and waves — continues to lag far behind. But progress is now being made as governments and the private sector step up efforts to bring marine energy into the mainstream.

The Rapid and Startling Decline
Of World’s Vast Boreal Forests

by jim robbins
Scientists are becoming increasingly concerned about the fate of the huge boreal forest that spans from Scandinavia to northern Canada. Unprecedented warming in the region is jeopardizing the future of a critical ecosystem that makes up nearly a third of the earth’s forest cover.

Northern Forests Emerge
As the New Global Tinderbox

by ed struzik
Rapidly rising temperatures, changes in precipitation, and increased lightning strikes are leading to ever-larger wildfires in the northern forests of Alaska, Canada, and Siberia, with potentially severe ecological consequences.

For U.S. Tribes, a Movement to
Revive Native Foods and Lands

by cheryl katz
On ancestral lands, the Fond du Lac band in Minnesota is planting wild rice and restoring wetlands damaged by dams, industry, and logging. Their efforts are part of a growing trend by Native Americans to bring back traditional food sources and heal scarred landscapes.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

A 2015 Yale e360 Video Contest winner captures stunning images of wild salmon runs in Alaska.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.


A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.