08 Jul 2013: Report

Molecular Detective Work
Yields Big Gains for Ecology

The field of stable isotope analysis was once the realm of geologists and anthropologists. But rapid advances and plummeting costs mean that environmental scientists are increasingly using the technology to gain insight into the migration and behavior of various animals.

by madeline bodin

Jack Hopkins was in charge of the cracker shells, beanbag rounds, and rubber bullets. As the leader of a bear management crew in Yosemite National Park, he fired these deterrents at food-pilfering black bears from a 12-gauge shotgun. Each spring he attached radio collars to bears trapped among the crowded campgrounds of Yosemite Valley. After three years of chasing recalcitrant bears, however, he had questions.

How many bears in the park — especially outside of the valley — associated humans and their paraphernalia with food? Did the bears he hazed in campgrounds lose their taste for human food? Was there a better way to manage the interaction between bears and humans?

Other researchers had spent years tracking the radio signals of collared bears looking for answers to these questions, but Hopkins thought he had a better idea: To use a technique called stable isotope analysis — which had been employed for decades by geologists, archeologists, and climatologists — to answer his questions about the interaction of Yosemite’s bears with its human visitors. The isotopic signature of bear guard hairs would help tell the tale.

Stable isotope analysis relies on the fact that elements in different environments and foods contain different atomic signatures, based on the
Scientists are examining the lives of animals that are too small, too dangerous, or live too remote to study in other ways.
number of neutrons. For example, the ratio of a heavy nitrogen isotope to the common nitrogen isotope tends to increase as you move up the food chain from plant to predator. Oceans have an isotopic signature that is distinct from fresh water. Dry habitats have a different ratio of carbon isotopes than wet habitats. Deuterium, a heavy hydrogen isotope, tends to be proportionately high in clouds over tropical oceans. It decreases predictably the farther inland you go.

In recent years, the cost of stable isotope analysis has steadily fallen, and as a result Hopkins and other ecologists are using the technique to examine the lives of animals that are too small, too dangerous, or that live too remotely to study in other ways. Scientists are now using stable isotope analysis to piece together the migrations of dragonflies, to deduce the likely wintering grounds of songbirds, and to determine why animals feed in different areas based on pressure from predators.

“Stable isotope analysis has been adopted by ecologists recently,” says Seth Newsome, an assistant professor of biology at University of New Mexico. “Before that it was used by geologists, paleontologists, archeologists and climatologists — people who study deep time.”

Newsome, for example, has used stable isotopes to study the shifting diet of California condors from the Pleistocene era through the present by examining the ratio of the heavier carbon and nitrogen isotopes in their bones. His work has revealed that Pleistocene condors fed more on whales or other marine mammals that washed up on shore, while today’s condors
Stable isotopes have been used to study the shifting diet of California condors from the Pleistocene to the present.
show isotopic ratios consistent with a diet of land-based plant-eaters, particularly corn-fed feedlot cattle.

The ratio between stable isotopes is sorted out using a device called a mass spectrometer. The sample to be analyzed — a dragonfly wing, or a hair from a bear — is sealed in a metal capsule that is smaller than a thimble, placed into the spectrometer, burned into a gas, and then shot toward a magnet. The magnet deflects each atom at an angle relative to its weight, much the way a prism refracts a beam of light into its component colors by wavelength.

In the late 1990s, before the development of tracking devices small enough to be carried by songbirds, stable isotope analysis changed the study of songbird migration from a game of chance — waiting for a banded bird to be spotted again — to a laboratory exercise. In 1998, Peter Marra, then at Dartmouth College, published the first paper linking the quality of a songbird’s wintering grounds with its survival and breeding success. Science Magazine called it “the Holy Grail of avian ecology.”

Marra, now at the Smithsonian Institution’s Migratory Bird Center, used carbon isotopes in the blood samples of small songbirds — American redstarts — arriving on their New Hampshire breeding grounds to determine which had wintered in rich, wet habitats and which had wintered in poor, dry habitats. Birds wintering in lush habitats in Jamaica and Honduras, mostly older males, arrived first. Previous studies had shown that early birds sire more offspring.

“That carbon technique is still state of the art,” Marra says of his method to link habitat and diet.

Jack Hopkins
Montana State University
Ecologist Jack Hopkins collects bear hair samples in Yosemite National Park for stable isotope analysis.
For tracking bird migration, data loggers now exist that are small enough to affix to a songbird. But that is not the case with dragonflies. So Marra and Kent McFarland of the Vermont Center for Ecological Studies are using stable isotope analysis to track the migration of green darner dragonflies. Green darners are large for an insect — imagine a flying blue-green cigarette — but still too small to carry a tracking device and too delicate even for the stickers that have been used to trace monarch butterfly migrations. That dragonflies migrate has been known for millennia, says McFarland. How green darners move north in the spring is still a mystery, however.

McFarland and Marra’s dragonfly research will rely on that deuterium gradient, which in North America runs roughly north to south, to trace the green darners’ journey. McFarland hopes his green darner studies will reveal important migration points for the dragonflies so that those places can be conserved, if necessary. Throughout their lives, the dragonflies maintain the isotopic signature of the pond where they were larvae. The green darner research is possible because analyzing a tiny piece of dragonfly wing in the Smithsonian’s mass spectrometer now costs only about $8 — crucial for a project that has no major funding.

When Hopkins, the Yosemite bear researcher, decided to concentrate on using stable isotopes to analyze the bears’ diets, he needed access to a mass spectrometer and a stable isotope expert. He found both in the Earth and Planetary Sciences Department at the University of California, Santa Cruz, in the lab of Paul Koch, a vertebrate paleoecology researcher wise in the ways of both stones and bones. But analyzing the hundreds of bear hair samples that he had collected by stringing barbed wire around bait stations throughout the park was not going to be as easy as popping the hair into the mass spectrometer and reading the results. First, he had to lay the groundwork.

As Marra has found, site-specific variables — such as elevation, diet, the age of the animal, and the distance from the seacoast — can confound the
Isotopic signatures showed there were twice as many problem bears in Yosemite Park as anyone expected.
isotopic ratios found in different creatures. Those variables are a trap for unwary researchers, says Merav Ben-David a professor in the Department of Zoology and Physiology at the University of Wyoming who wrote several of the papers in a special feature in the Journal of Mammalogy last year on stable isotope analysis. “There are hundreds of papers out there that I consider unreliable because people didn’t quantify the underlying variations,” she says.

Hopkins — now a post-doctoral researcher at the University of Alberta and Peking University — figured out the underlying variables for his bear study by analyzing human hair samples from a barber shop in St. Louis, hair samples from Yosemite black bears known to eat human food, bears known not to eat human food, and samples of just about any food a bear might eat in the backcountry, from berries to mule deer. The various samples allowed him to compare the isotope ratios in the bear hair to the actual, natural food the bears would eat in Yosemite.

Once he compared the isotopic signatures in the hair of about 300 bears from around Yosemite, Hopkins found that there were four additional bears in the busy Yosemite Valley that were conditioned to human food that the bear managers didn’t know about, in addition to about 20 that they did know about. The big surprise was how many bears in the backcountry – 15 — were also eating human food. There were twice as many problem bears in the park than previously known. Bears that had been identified as eating human food in an earlier study stayed human-food eaters in this study; scaring or moving bears was not changing their behavior.

MORE FROM YALE e360

Counting Species: What It Says
About Human Toll on Wildlife

Klinkenborg Counting Species: What It Says About Human Toll on Wildlife
By analyzing mitochondrial DNA, scientists now can make more accurate estimates of the numbers of individual species that existed centuries ago. Verlyn Klinkenborg explores what it is telling us about our impact on the natural world and about our own future.
READ MORE
Hopkins’ bear studies have provided scientific confirmation for bear-management changes already underway in Yosemite National Park. Park officials are still firing bean bag rounds at Yosemite Valley’s recalcitrant bears, but this year, among other changes, the park has increased efforts to prevent bears in the backcountry from ever tasting human food.

Ben-David says that such isotope research enables researchers to look beyond just diet to broader animal behavior. Her 2004 paper in Oecologia used nitrogen isotopes to show that female Alaskan brown bears with young cubs sometimes avoid salmon streams, forgoing a feast in order to keep their cubs safe from other bears. A 2007 study by University of Victoria conservation scientist Chris Darimont discovered that black-tailed deer pay for feeding in richer habitats by becoming more likely prey for wolves.

Ben-David admits that it is impossible to know where the cutting edge of ecological stable isotope studies will be in two years. “This field is moving very fast,” she says. So fast, that when she was recently asked to compile some papers on ecological studies using stable isotopes into a book, she refused.

“By the time it’s published,” she says, “it will be ancient history.”

POSTED ON 08 Jul 2013 IN Climate Policy & Politics Science & Technology Sustainability Europe North America 

COMMENTS


Very excited to apply stable isotopes for ecological studies in Himalaya. Great job Jack. Proud to be associated with you.

Posted by Bikash Adhikari on 13 Jul 2013


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


madeline bodinABOUT THE AUTHOR
Madeline Bodin is a freelance writer specializing in wildlife conservation science. She lives in Vermont. Her writing has explored the fate of New England’s largest bat cave, the forensic techniques used to solve wildlife crimes, and the mafia-like tactics of cowbirds. Her work has appeared in Scientific American, Popular Mechanics, National Wildlife, and many other publications.

 
 

RELATED ARTICLES


Trouble in Paradise: A Blight
Threatens Key Hawaiian Tree

The ʻohiʻa is Hawaii’s iconic tree, a keystone species that maintains healthy watersheds and provides habitat for numerous endangered birds. But a virulent fungal disease, possibly related to a warmer, drier climate, is now felling the island’s cherished 'ohi'a forests.
READ MORE

Climate Change Adds Urgency
To Push to Save World’s Seeds

In the face of rising temperatures and worsening drought, the world’s repositories of agricultural seeds may hold the key to growing food under increasingly harsh conditions. But keeping these gene banks safe and viable is a complicated and expensive challenge.
READ MORE

How Satellites and Big Data
Can Help to Save the Oceans

With new marine protected areas and an emerging U.N. treaty, global ocean conservation efforts are on the verge of a major advance. But to enforce these ambitious initiatives, new satellite-based technologies and newly available online data must be harnessed.
READ MORE

How Ocean Noise Pollution
Wreaks Havoc on Marine Life

Marine scientist Christopher Clark has spent his career listening in on what he calls “the song of life” in the world’s oceans. In an interview with Yale Environment 360, he explains how these marine habitats are under assault from extreme—but preventable—noise pollution.
READ MORE

Beyond the Oregon Protests:
The Search for Common Ground

Thrust into the spotlight by a group of anti-government militants as a place of confrontation, the Malheur wildlife refuge is actually a highly successful example of a new collaboration in the West between local residents and the federal government.
READ MORE

 

MORE IN Reports


Can Uber-Style Buses Help
Relieve India's Air Pollution?

by jason overdorf
India’s megacities have some the deadliest air and worst traffic congestion in the world. But Indian startups are now launching initiatives that link smart-phone apps and private shuttle buses and could help keep cars and other motorized vehicles off the roads.
READ MORE

Trouble in Paradise: A Blight
Threatens Key Hawaiian Tree

by richard schiffman
The ʻohiʻa is Hawaii’s iconic tree, a keystone species that maintains healthy watersheds and provides habitat for numerous endangered birds. But a virulent fungal disease, possibly related to a warmer, drier climate, is now felling the island’s cherished 'ohi'a forests.
READ MORE

Climate Change Adds Urgency
To Push to Save World’s Seeds

by virginia gewin
In the face of rising temperatures and worsening drought, the world’s repositories of agricultural seeds may hold the key to growing food under increasingly harsh conditions. But keeping these gene banks safe and viable is a complicated and expensive challenge.
READ MORE

As World Warms, How Do We
Decide When a Plant is Native?

by janet marinelli
The fate of a tree planted at poet Emily Dickinson's home raises questions about whether gardeners can — or should — play a role in helping plant species migrate in the face of rising temperatures and swiftly changing botanical zones.
READ MORE

With New Tools, A Focus
On Urban Methane Leaks

by judith lewis mernit
Until recently, little was known about the extent of methane leaking from urban gas distribution pipes and its impact on global warming. But recent advances in detecting this potent greenhouse gas are pushing U.S. states to begin addressing this long-neglected problem.
READ MORE

Is Climate Change Putting
World's Microbiomes at Risk?

by jim robbins
Researchers are only beginning to understand the complexities of the microbes in the earth’s soil and the role they play in fostering healthy ecosystems. Now, climate change is threatening to disrupt these microbes and the key functions they provide.
READ MORE

As Electric Cars Stall, A Move
To Greener Trucks and Buses

by cheryl katz
Low gasoline prices and continuing performance issues have slowed the growth of electric car sales. But that has not stymied progress in electrifying larger vehicles, including garbage trucks, city buses, and medium-sized trucks used by freight giants like FedEx.
READ MORE

Food Insecurity: Arctic Heat
Is Threatening Indigenous Life

by ed struzik
Subsistence hunters in the Arctic have long taken to the sea ice to hunt seals, whales, and polar bears. But now, as the ice disappears and soaring temperatures alter the life cycles and abundance of their prey, a growing number of indigenous communities are facing food shortages.
READ MORE

The Carbon Counters: Tracking
Emissions in a Post-Paris World

by nicola jones
In the wake of the Paris climate agreement, developing countries find themselves in need of analysts capable of monitoring their emissions. It’s a complex task, but organizations are stepping in with online courses to train these new green accountants.
READ MORE

Can Data-Driven Agriculture
Help Feed a Hungry World?

by john roach
Agribusinesses are increasingly using computer databases to enable farmers to grow crops more efficiently and with less environmental impact. Experts hope this data, detailing everything from water use to crop yields, can also help the developing world grow more food.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
A, aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“Battle
The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.

e360 SPECIAL REPORT

“Tainted
A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

OF INTEREST



Yale