04 Apr 2016: Report

With New Tools, A Focus
On Urban Methane Leaks

Until recently, little was known about the extent of methane leaking from urban gas distribution pipes and its impact on global warming. But recent advances in detecting this potent greenhouse gas are pushing U.S. states to begin addressing this long-neglected problem.

by judith lewis mernit

Battered by storms and weakened with age, the natural gas distribution pipes of urban New Jersey have long been in need of repair. And for a long time, the state’s largest utility, Public Service and Enterprise Group (PSE&G), has wanted to replace them. The problem is that pipelines cost upwards of $1.3 million per mile, and the utility owns 4,330 miles of them. Replacing it all would cost at least $6 billion, not to mention decades of work.

In December 2014, however, the Environmental Defense Fund (EDF) approached the utility with a solution. Using new technology that can trace methane emissions back to their sources with great precision,

Jukka Isokoski
Workers install a natural gas pipeline.
researchers could home in on the highest-risk pipes, allowing the utility to prioritize repairs along the worst offending lines. EDF and its collaborators, from Colorado State University and Google Earth Outreach, then spent six months gathering data the utility could use.

The state’s Board of Public Utilities, which determines how much money PSE&G can raise from its customers and how it can spend it, had earlier rejected a request from the utility to raise $1.6 billion for 800 miles of new pipeline. But after the results of the monitoring effort were in, the utility narrowed its request to 510 miles of pipeline replacement, at a cost of $905 million over three years. Work on the project begins this month.

This collaborative effort in New Jersey is one of numerous initiatives underway in the United States to drastically reduce fugitive methane emissions from natural gas infrastructure in urban environments. Utilities want to reduce those emissions mostly out of concern for safety: The U.S. Department of Transportation’s Pipeline and Hazardous Materials Safety Administration reports 45 incidents within New Jersey’s natural-gas distribution network alone over the last 20 years — five of them deadly. But leaks also cost money. In the city of Boston, where several studies have observed high concentrations of natural gas in the atmosphere, an estimated $90 million worth of natural gas escapes every year from faulty pipes, an expense local utilities pass on to consumers.

For environmentalists, however, even small fissures in natural gas pipelines are a cause for alarm, because methane is a potent greenhouse gas. Methane doesn’t persist as long in the atmosphere as does carbon dioxide, which lasts for centuries. But in the 12 to 14 years that it lingers, methane traps heat at least 30 times more efficiently than does carbon dioxide. Which means that many small natural gas leaks — too small to cause safety problems — can pose a serious risk to the climate.

Those many otherwise minor leaks have been accumulating at an accelerating pace, not just in Newark, New Jersey — the most leaky city in PSE&G’s territory — but along gas distribution lines in Los Angeles, Boston, Baltimore, and all five boroughs of New York City.
Natural gas escapes into sewer lines and buildings, rides up ventilation shafts, and descends into subways.
One recent study found leaks in Manhattan occurring at a rate of 4.25 per mile — a nearly 10 times greater leak density than the same study found in Cincinnati, Ohio, where Duke Energy addressed the problem with a recently completed, 15-year, $1 billion project to replace old cast-iron pipes with reinforced steel. In a landmark street-level analysis of Boston’s natural gas leaks published in 2012, researchers found that the city loses nearly 3 percent of its supply through cracks in its aging pipes. A subsequent Harvard University study, which sampled air from rooftops in the Boston area from 2012 to 2013, revealed atmospheric methane concentrations two to three times higher than previous estimates, amounting in total as enough to heat 200,000 homes, according to the study’s authors.

Methane leaks from gas pipelines are just one source of global methane emissions from human sources that are of increasing concern to climate scientists. Last October, a wellhead failed at an underground natural gas storage site on the northern edge of Los Angeles called Aliso Canyon, causing a massive release of its contents. By the time the well was capped on February 18, it had spewed 105,822 U.S. tons of methane into the atmosphere, the climate equivalent of carbon dioxide emissions from 900 million gallons of gasoline. In the U.S. and around the world, methane also escapes from landfills, from compressed natural-gas filling stations, and during oil and gas extraction and transmission.

Gas distribution pipelines, which begin at what engineers call the “city gate” and deliver gas to homes and businesses, are different from gas transmission pipelines, which carry natural gas from production fields to distribution hubs. Gas flows through distribution pipelines at relatively low pressure, and they’re closer to the surface, only two or three feet deep. Their maintenance is up to the utilities that own them, and regulated by the states. So even though leaks from the older ones threaten to take a serious bite out of federal efforts to slow the pace of climate change, the federal government can’t do much about them. The problem is that states haven’t either. Like the utilities, regulators and state legislatures haven’t monitored for tiny but climate-harming leaks, concentrating instead on immediate safety issues involving larger leaks that could combust.

Boston has methane leaks (the yellow and orange dots) every mile. View more cities.

Photo: EDF


“The current regulatory framework in most states doesn’t recognize distribution leaks as an environmental problem,” says Simi Rose George, a regulatory affairs expert with EDF. “That’s something we think needs to change.”

The first step toward that change has been to find out just how much natural gas emits from city pipelines, and where. But measuring methane in cities is hard, says Rob Jackson, an environmental scientist at Stanford University who, with Boston University’s Nathan Phillips, worked on the first block-by-block city analysis of methane leaks five years ago in Boston. “It’s not like measuring methane at oil and gas production facilities,” Jackson says. “You can’t see it at a distance with an infrared camera.” Natural gas also moves around. “When cars zip by, the gas goes up and down and sideways.” It escapes into sewer lines, into buildings, rides up ventilation shafts, and descends into subways.

The utilities themselves have typically compared what comes in at the city gate with actual deliveries to consumers to arrive at a figure for lost gas. That’s in part because you don’t need precise measurements to detect a combustible amount of natural gas in the air; since odorants are added at the city gate, it just takes a nose. But it’s also because, until recently, the technology to quantify leaks with any precision wasn’t yet on the market. The industry’s standard methane detector has long been a handheld box with a wand you wave around in the air, something like the ghost-detecting prop in the Ghostbuster movies. “It’s only semi-quantitative,” Phillips says. “You don’t look at it and say, ‘We’ve got 4.1 parts per million in this spot.’ You can only say, ‘We’re getting gas.’”

That changed in 2010, when Picarro, Inc., a technology company based in Santa Clara, California, unveiled a special kind of sensor, called a “cavity ring-down spectrometer” to detect atmospheric concentrations of greenhouse gases in finer detail than ever before.
If utilities fix gas leaks for environmental reasons, they can catch leaks decades before they have a chance to explode.
The Picarro instrument draws air into a partial vacuum and reveals its precise chemical makeup with a laser pulse that pings off mirrors. The process slows down, or decays, depending on what kind of gas is in the chamber.

“It’s like a ping pong ball bouncing around,” Phillips says. If it’s bouncing around in plain air, it keeps bouncing for a while. “But if it’s bouncing around in molasses, it’s going to slow down.”

Phillips, a tree physiologist, became fascinated with the technology and its possibilities as a mobile device that could be attached to cars and produce spatial renderings of possible pipeline corrosion. “It’s one thing to smell a leak as I’m walking by someplace, and report it to the gas company,” Phillips says. “That’s just an anecdote.” It’s another to see all of those anecdotes mapped. “Then everyone can see the scope of the problem.”

Phillips thinks the work he and Jackson pioneered was probably inevitable; if they hadn’t done it, someone else would have. “It’s the natural outcome of mobile networks and sensors and spatial information,” he says. Nevertheless, it’s become the model for several other mapping projects, including EDF’s collaboration with Google Earth Outreach and Colorado State University.

That effort has now mapped segments of the Los Angeles metropolitan area, along with Boston, Chicago and Indianapolis, outfitting Google Street View cars with Picarro sensors, wind gauges, and GPS. It has revealed what might be considered an obvious trend, but one that nevertheless proves a point: Cities whose infrastructure haven’t been shored up in the last half century lose natural gas from their pipelines at higher rates than cities with newer pipeline infrastructure.

The natural gas escaping from pipelines in Massachusetts accounts for 10 percent of the state’s greenhouse gas emissions.
“We think it’s a compelling tool to help regulators assess the need for pipeline replacement programs,” says EDF’s George. She notes that if utilities fix gas leaks for environmental reasons, they can catch leaks years, even decades, before they ever have a chance to ignite and explode.

Five years ago, an explosion in San Bruno, California that killed eight people and leveled 38 homes was traced back to a faulty weld in a steel natural gas pipeline owned by Pacific Gas & Electric, a large for-profit utility that serves parts of Central and Northern California. In addition to the tragedy of lost lives and a neighborhood destroyed, the accident cost the utility dearly in fines and legal fees: California regulators hit the utility with a $1.6 billion fine for the negligence that caused that accident. The California utility later became the first in the nation to employ the Picarro sensor to detect even the most miniscule methane emissions from its pipelines.

The Southern California Gas Company, too, might have benefitted from better leak detection technology at its Los Angeles underground storage well field, where the four-month leak issued more methane into the atmosphere than any other such event in U.S. history. Just the expense of moving residents out of the Porter Ranch community adjacent to the storage field will run into the tens of millions of dollars. The Los Angeles County district attorney has filed criminal charges against the utility, and personal-injury lawyers swarming the incident are just getting started.

More proactively, the Picarro sensor’s detailed findings, combined with the vivid maps the street car projects generate, have begun to move lawmakers in certain more environmentally progressive states to consider the climate impact of natural gas distribution system problems.

ALSO FROM YALE e360

On Fracking Front, A Push
To Reduce Leaks of Methane

On Fracking Front, A Push To Reduce Leaks of Methane
Scientists, engineers, and government regulators are increasingly turning their attention to solving one of the chief environmental problems associated with fracking for natural gas and oil – significant leaks of methane, a potent greenhouse gas.
READ MORE
New Jersey legislators introduced a bill in February that would require utilities to quantify and repair leaks for environmental reasons, modeled on a law Massachusetts passed in 2014.

California legislators passed a similar law that same year, out of concern that the state’s efforts to promote renewable energy were being undercut by natural gas pipelines losing methane into the atmosphere as they deliver supplies to the state’s consumers. In late March, state regulators considering how to implement the law proposed requiring all utilities to monitor their natural gas distribution lines using mobile sensors mounted on cars.

Nathan Phillips thinks California officials are right to be worried. In Massachusetts, he says, the amount of natural gas escaping from pipelines might account for as much as 10 percent of the state’s greenhouse gas emissions inventory. “Ten percent,” he says. “That to me is a big number. Because it was something we had not even included. It was a complete element of the pie chart that wasn’t ever in the ledger. Now it is.”

POSTED ON 04 Apr 2016 IN Climate Climate Energy Policy & Politics Pollution & Health Pollution & Health Science & Technology Science & Technology Urbanization Europe North America North America 

COMMENTS


Great article. Is there any data for CT? We're
fighting a gas/oil fired power plant in Oxford, CT,
and one of the ways we're digging at them is by
preventing the pipeline expansion. Thank you.
Posted by Elaine Mckinney on 04 Apr 2016


JOBS, yea!
Posted by on 04 Apr 2016


I thought it is article about new technology"
new technology that can trace methane emissions back to their sources with great precision" But it came out same paid article from utility. Any detail about what they found? Does public has right to know this details of gas leak?
Media has mind to ask this question for the public?
Posted by Paresh Trivedi on 05 Apr 2016


The Environeers here in north central Pennsylvania are conducting a methane research project using a LaserMethane detector. This cutting edge technology allows us to test accurately for methane continuously at only a one part per million up and at a distance of up to 300 feet. We have extended these measurements up to 900 feet under perfect conditions. We have worked with another non-profit, "Clean Our Streams Pa" in the oil and gas fields. We have found gas leaking wells, compressors, pipes, pipe lines, the entire industry is vulnerable. Gas needs to be phased out and investments put into tidal, solar and wind generation. The gas industry is faulty and can not be fixed. This is a hard environmental fact which has to be confronted no matter how inconvenient. With funding, we hope to expand this research into radioactive isotopes for the wells are contaminating more than the air.
Posted by Paul Otruba on 05 Apr 2016


Excellent article.

However, the potential positive feedback loop in the Arctic could release gigatonnes of methane.

Self-accelerating. End-game potential.





p.s., Your text test is difficult for persons with a color recognition deficiency.
Posted by Russ Brown on 07 Apr 2016


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


judith lewis mernitABOUT THE AUTHOR
Judith Lewis Mernit writes about energy and the environment from Los Angeles, California. Her work has appeared in The Atlantic, Audubon, and Los Angeles Magazine. Find her on Twitter as @judlew.

 
 

RELATED ARTICLES


With Trump, China Emerges
As Global Leader on Climate

With Donald Trump threatening to withdraw from the Paris Agreement, China is ready to assume leadership of the world’s climate efforts. For China, it is a matter of self-interest – reducing the choking pollution in its cities and seizing the economic opportunities of a low-carbon future.
READ MORE

Full Speed Ahead: Shipping
Plans Grow as Arctic Ice Fades

Russia, China, and other nations are stepping up preparations for the day when large numbers of cargo ships will be traversing a once-icebound Arctic Ocean. But with vessels already plying these waters, experts say the time is now to prepare for the inevitable environmental fallout.
READ MORE

Obama’s Environmental Legacy:
How Much Can Trump Undo?

Few groups were as shocked and chagrined by Donald Trump’s victory as the environmental community. Yale Environment 360 asked environmentalists, academics, and pro-business representatives just how far Trump might roll back President Obama’s environmental initiatives.
READ MORE

What a Trump Win Means
For the Global Climate Fight

Donald Trump’s ascension to the presidency signals an end to American leadership on international climate policy. With the withdrawal of U.S. support, efforts to implement the Paris agreement and avoid the most devastating consequences of global warming have suffered a huge blow.
READ MORE

The Methane Riddle: What Is
Causing the Rise in Emissions?

The cause of the rapid increase in methane emissions since 2007 has puzzled scientists. But new research finds some surprising culprits in the methane surge and shows that fossil-fuel sources have played a much larger role over time than previously estimated.
READ MORE

 

MORE IN Reports


Full Speed Ahead: Shipping
Plans Grow as Arctic Ice Fades

by ed struzik
Russia, China, and other nations are stepping up preparations for the day when large numbers of cargo ships will be traversing a once-icebound Arctic Ocean. But with vessels already plying these waters, experts say the time is now to prepare for the inevitable environmental fallout.
READ MORE

How Forensics Are Boosting
Battle Against Wildlife Trade

by heather millar
From rapid genetic analysis to spectrography, high-tech tools are being used to track down and prosecute perpetrators of the illegal wildlife trade. The new advances in forensics offer promise in stopping the trafficking in endangered species.
READ MORE

African Wetlands Project: A Win
For the Climate and the People?

by winifred bird
In Senegal and other developing countries, multinational companies are investing in programs to restore mangrove forests and other wetlands that sequester carbon. But critics say these initiatives should not focus on global climate goals at the expense of the local people’s livelihoods.
READ MORE

Ghost Forests: How Rising Seas
Are Killing Southern Woodlands

by roger real drouin
A steady increase in sea levels is pushing saltwater into U.S. wetlands, killing trees from Florida as far north as New Jersey. But with sea level projected to rise by as much as six feet this century, the destruction of coastal forests is expected to become a worsening problem worldwide.
READ MORE

On College Campuses, Signs of
Progress on Renewable Energy

by ben goldfarb
U.S. colleges and universities are increasingly deploying solar arrays and other forms of renewable energy. Yet most institutions have a long way to go if they are to meet their goal of being carbon neutral in the coming decades.
READ MORE

For European Wind Industry,
Offshore Projects Are Booming

by christian schwägerl
As Europe’s wind energy production rises dramatically, offshore turbines are proliferating from the Irish Sea to the Baltic Sea. It’s all part of the European Union’s strong push away from fossil fuels and toward renewables.
READ MORE

In New Ozone Alert, A Warning
Of Harm to Plants and to People

by jim robbins
Scientists are still trying to unravel the damaging effects of ground-level ozone on life on earth. But as the world warms, their concerns about the impact of this highly toxic, pollution-caused gas are growing.
READ MORE

The Rising Environmental Toll
Of China’s Offshore Island Grab

by mike ives
To stake its claim in the strategic South China Sea, China is building airstrips, ports, and other facilities on disputed islands and reefs. Scientists say the activities are destroying key coral reef ecosystems and will heighten the risks of a fisheries collapse in the region.
READ MORE

Natural Aquaculture: Can We
Save Oceans by Farming Them?

by richard schiffman
A small but growing number of entrepreneurs are creating sea-farming operations that cultivate shellfish together with kelp and seaweed, a combination they contend can restore ecosystems and mitigate the impacts of ocean acidification.
READ MORE

High Stakes on the High Seas:
A Call for International Reserves

by nicola jones
Marine protected areas in national waters have proven successful in helping depleted fish stocks to recover. Now, there is growing momentum for the creation of extensive reserves on the high seas as a way of reversing decades of rampant overfishing.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“Ashaninka
An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

OF INTEREST



Yale