Menu
15 Apr 2010

As Pharmaceutical Use Soars, Drugs Taint Water and Wildlife

With nearly $800 billion in drugs sold worldwide, pharmaceuticals are increasingly being released into the environment. The “green pharmacy” movement seeks to reduce the ecological impact of these drugs, which have caused mass bird die-offs and spawned antibiotic-resistant pathogens.
By sonia shah

The standard that new drugs be safe for human consumption was first enshrined in U.S. regulations in 1938, after an antibacterial drug dissolved in a poisonous solvent killed 100 children. Now, armed with a range of evidence suggesting that wildlife and human health may be threatened by pharmaceutical residues that escape into waterways and elsewhere, a growing band of concerned ecotoxicologists and environmental chemists are calling for yet another standard for new medications: that they be designed to be safe for the environment.

The movement for “green pharmacy,” as it has been dubbed, has grown as new technology has allowed scientists to discern the presence of chemicals in the environment at minute concentrations, revealing the wide dispersal of human and veterinary drugs across the planet. In recent years, scientists have detected trace amounts of more than 150 different human and veterinary medicines in environments as far afield as the Arctic. Eighty percent of the U.S.’s streams and nearly a quarter of the nation’s groundwater sampled by the United States Geological Survey (USGS) has been found to be contaminated with a variety of medications.

This contamination is poised to worsen as the global appetite for medications swells. The drug industry sold $773 billion worth of drugs worldwide in 2008, more than double the amount sold in 2000, and with an aging population and ever-cheaper manufacturing, pharmaceutical production is expected to grow 4 to 7 percent annually until at least 2013. Americans bring home more than 10 prescription drugs per capita per year, consuming an estimated 17 grams of antibiotics alone — more than three times the per capita rate of consumption in European countries such as Germany. U.S. livestock consume even more, with farmers dispensing 11,000 metric tons of antimicrobial medications every year, mainly to promote the growth of animals.

Drugging our bodies inevitably drugs our environment, too, as many medications can pass through our bodies and waste treatment facilities virtually intact. And it is difficult to predict where and how unexpectedly vulnerable creatures may accrue potentially toxic doses. Take, for example, the ongoing mass poisoning of vultures in South Asia by anti-arthritis painkillers.

The popular anti-inflammatory and arthritis drug, diclofenac, is sold worldwide under more than three dozen different brand names, and is used in both human and veterinary medicine. In India, farmers started dosing their cows and oxen with the drug in the early 1990s to relieve
Scientists have discovered a range of adverse effects in wildlife exposed to pharmaceuticals.
inflammation that could impair the animals’ ability to provide milk or pull plows. Soon, about 10 percent of India’s livestock harbored some 300 micrograms of diclofenac in their livers. When they died, their carcasses were sent to special dumps and picked clean by flocks of vultures. It was an efficient system, for unlike feral dogs and plague-infested rats, South Asia’s abundant vulture population — estimated at more than 60 million in the early 1990s — carried no human pathogens and was resistant to livestock diseases such as anthrax.

But vultures who fed on the treated carcasses accrued a dose of diclofenac of around 100 micrograms per kilogram. A person with arthritis would need 10 times that amount to feel an effect, but it was enough to devastate the vultures. Between 2000 and 2007, the South Asian vulture population declined by 40 percent every year; today, 95 percent of India’s Gyps vultures and 90 percent of Pakistan’s are dead, due primarily to the diclofenac that scientists have found lurking in their tissues. South Asian and British scientists who experimentally exposed captive vultures to diclofenac-dosed buffalo found that the birds went into renal failure — scientists still don’t know why — and died within days of exposure. As the vulture population has declined, the feral dog population has boomed, and the Indian government’s attempt to control the rabies they carry has started to flounder.

The governments of India, Pakistan, and Nepal banned veterinary use of diclofenac in 2006, but the drug has still not disappeared from livestock tissues. And last year scientists found that another arthritis drug — ketoprofen — is similarly deadly for the birds.

The poisoning of vultures, while dramatic, is not the only worrisome impact of our medicated environment. Scientists have discovered a range of adverse effects in wildlife exposed to pharmaceutical residues, from impaired reproduction to less-fit offspring.

Vulture
Photo by Munir Virani
Ninety-five percent of Gyps vultures in India and 90 percent in Pakistan have died since the early 1990s, due primarily to exposure to diclofenac, an anti-inflammatory and arthritis drug.
For example, freshwater habitats around the world have been found contaminated with the synthetic estrogen used in contraceptive pills, ethynylestradiol. While concentrations are generally found around .5 nanograms per liter, concentrations as high as several hundred nanograms per liter have been reported, as well. A large body of evidence has connected this contamination with excess feminization in fish. In one study, U.S. and Canadian government scientists purposely contaminated an experimental lake in Ontario with around 5 nanograms per liter of ethynyl estradiol, and studied the effects on the lake’s fathead minnow population, a common species that fish like lake trout and northern pike feed on. Minnows normally become sexually mature at two years of age and enjoy a single mating season before perishing. Exposed to ethynyl estradiol, the male minnows’ testicular development was arrested and they started making early-stage eggs instead. That year’s mating season was disastrous. Within two years, the minnow population crashed.

Recent findings in New England of higher concentrations of hermaphroditic frogs around suburban and urban waterways, compared to those in undisturbed and agricultural areas, have led to suspicions that synthetic estrogens may be exerting a similarly disruptive effect on amphibians, according to Yale University ecologist David Skelly, who is currently investigating the possibility.

Our drugged environment could also affect human health. Background levels of antibiotics in the environment may be hastening the emergence of difficult-to-control antibiotic-resistant pathogens. Bacteria share genes across species, and so any increased drug resistance in one species can cross into other, more pathogenic species. As one might suspect, scientists have found that drug-resistant bacteria populations are much more common in environments where antibiotics are heavily used. For example, in samples from dairy farms where livestock are treated, and from lakes that receive effluent from hospitals, antibiotic-resistant bacteria are up to 70 percent more common than in uncontaminated environments. The facilities that must manage such antibiotic waste, by using the metabolic capacity of bacteria to treat the wastewater, become “selection machines for resistant bacteria,” says University of Gothenburg physiology professor Joakim Larsson.

Experimental evidence suggests that the witch’s brew of drugs, pesticides, and other trace chemicals in the environment could be acting synergistically to ratchet up the adverse effects on wildlife. Scientists have
Waste-treatment facilities can become ‘selection machines for drug-resistant bacteria.’
tried to reproduce the effects of these mixtures by studying the impacts of combinations of compounds commonly found together in the environment — analyzing, for example, the effects of trace amounts of the antidepressant, fluoxetine, and the herbicide clofibric acid. They’ve found that low concentrations of fluoxetine have no effect on water fleas. Nor do low concentrations of clofibric acid. But if water fleas are exposed to both compounds in combination, the mixture will kill more than half.

Similarly, water fleas suffer no adverse effect when exposed to low concentrations of the antibiotics erythromycin, triclosan, and trimethoprim. But if exposed to all three simultaneously, scientists have found, water fleas’ sex ratios become skewed.

Such impacts may intensify as the climate changes, especially in poor, arid countries. Countries with few resources and little water are more likely to recycle wastewater into drinking water, particularly as their regions become more arid, increasing the concentrations of pharmaceuticals and other contaminants. “This is becoming a more potent problem,” says University of Freiburg environmental chemist and leading green-pharmacy advocate Klaus Kümmerer. “We may have a closed cycle, and compounds may become enriched.”

Environmental toxicologists agree that while many of the adverse effects they’ve found in wildlife have been subtle, there is nothing preventing a vulture-like die-off from pharma poisoning elsewhere. “The vultures would have been a tough one to predict,” says Mitchell Kostich, who studies the ecological risks of pharmaceuticals at the U.S. Environmental Protection Agency (EPA). “Are we going to be able to predict those kind of cases?”

Given the current state of knowledge and today’s regulatory infrastructure, probably not. Diclofenac was first launched in the mid-1970s, before regulators in the U.S. or Europe required environmental assessments of
Drug makers should consider environmental impact before new drugs are brought to market.
new drugs. Today, the U.S. Food and Drug Administration (FDA) only requires drug companies to file an environmental assessment if drugmakers plan to manufacture more than 40 tons of a drug. In 2008, just 20 out of more than 10,000 claimants were required to file such an assessment. And the FDA only requires assessments of a single manufacturer’s contribution, not the total volume of the drug that may be produced or leaked into the environment.

Even if a comprehensive environmental assessment had been required, it is unlikely that diclofenac’s effect on vultures would have been detected. Toxicity testing on wildlife is generally conducted on aquatic species, under the assumption that most environmental exposures to pharmaceuticals will occur via wastewater. The most commonly used species for such testing is the crustacean Daphnia, also known as the water flea. “If there is an effect on Daphnia, there may be an effect on other organisms,” says Kümmerer, “But there is no organism that is the most sensitive organism. Test organisms are a compromise between sensitivity and ease of rearing in the lab, and availability.”

And some species, such as Old World vultures, have idiosyncratic reactions. “Chickens could eat diclofenac and have no effect,” notes Brunel University ecotoxicologist John Sumpter. So could New World vultures, who likewise seem mysteriously impervious to the drug. And neither FDA nor European Union rules empower regulators to ban a human medicine based solely on environmental concerns.

While EPA and USGS scientists hope to figure out which pharmaceuticals are most dangerous in the environment and help wastewater treatment facilities learn how to screen for and treat them, green-pharmacy advocates such as Kümmerer are calling for a whole new approach to medicine-making. They argue that rather than aim for the most biologically potent, long-lasting compounds — the miracle cures that have long been the Holy Grail of pharmacology — drug-makers should create drugs that are “benign by design” and should consider environmental impact before new drugs are brought to market. Such an approach could lead to a new category of “green drugs”: compounds that biodegrade quickly and easily in the environments they inevitably end up in.

MORE FROM YALE e360

Behind Mass Die-Offs,
Pesticides Lurk as Culprit

Pesticides
In the past dozen years, three new diseases have decimated populations of amphibians, honeybees, and — most recently — bats. Increasingly, scientists suspect that low-level exposure to pesticides could be contributing to this rash of epidemics.
READ MORE
Drug companies have already made strides in reducing waste in manufacturing because it saves them money and energy, Kümmerer says. But in order to convince companies to consider a drug’s environmental impact, extra incentives will most likely be required. One incentive put forward by the European Environment Agency in January would involve extending patent protection for drugs that are safe, effective, and environmentally friendly.

That alone, by providing a solid boost to profit margins, could prove a powerful incentive for drug companies, and could help unleash a new generation of more easily degradable green drugs. Such drugs will not be as easy to store and distribute as today’s drugs, though. Sensitive to sunlight and heat, they’ll be more likely to be packaged in darkened bottles and require refrigeration. And then it will be up to us, as patients, to choose them anyway — and heal ourselves without sickening our environment.

ABOUT THE AUTHOR


Sonia Shah is an author and science journalist whose writing has appeared in The Nation, New Scientist, The Washington Post and elsewhere. Her third book, The Fever: How Malaria Ruled Humankind for 500,000 Years, will be published in 2010. In a recent article for Yale Environment 360, she wrote about the spread of new pathogens.
MORE BY THIS AUTHOR

SHARE: Tweet | Digg | Del.icio.us | Reddit | Mixx | Facebook | Stumble Upon

COMMENTS


Another way, maybe a more significant way that pharmaceutical industry is polluting the environment is that the chemicals (especially the organic chemicals) they use will get into the soil and groundwater at their manufacturing sites. These chemicals, many of which are carcinogenic, will also penetrate to residential houses nearby.

Posted by cathy on 15 Apr 2010


Maybe more natural therapies will come to be valued yet! When there isn't a self-interested drug
company involved, results of testing could actually be impartial.

Posted by jose on 18 Apr 2010


1. Less total units/doses per prescription.
2. Insurance co-pays should not encourage purchasing more drugs than necessary.
3. "Trial amount" for new therapy.
4. Finish antibiotic prescriptions unless told otherwise by health care provider.
5. Pass legislation to have drugs administered for treatment only in livestock. (Worked well in EU.)
6. I have talked to microbiologists and infectious disease specialists...resistance doesn't happen in land fills or water supplies.

Posted by Nancy on 26 Apr 2010


Excess drugs Should be returned to the pharmacy for safe disposal, not put in the bin.
A move towards more benign, degradable drugs would be a big step forward; but it will take heavy regulation to make big pharma comply.

Nancy: " I have talked to microbiologists and infectious disease specialists...resistance doesn't happen in land fills or water supplies." ?

I'd love to see some scientific references to back this up. Just like the transgenes in GMOs can't cross to other organisms?...Experts assured us that it was impossible & we'd all look like plants by now if it could happen. But they removed the protective mechanisms that normally prevent transfer of genetic material in the gene insertion process, and sure enough we find "round-up ready" herbicide tolerant bacteria in human digestive tracts, and in landfills. Oops!

Posted by OohLahLah on 28 Apr 2010


Well, what a useless Department the FDA is proving to consistantly be. As Usual the big Pharmaceutical companies continue to destroy life and receive not even a slap on the wrist.

Posted by Snorris on 07 May 2010


Actually, we can start to use herbs instead of chemical drugs, make a meaningful contribution to the health of plants around our homes such as ginger, turmeric, etc., besides not causing side effects also did not result in residues harmful to the environment because it is easily absorbed by the soil.

The world must also reproduce herbal scientists and experts to be able to discover more about the benefits of a wide range of plants which grow there in this world for human health is unexplored, so that little by little the drug dependence of toxic chemicals that clearly waning.

Posted by Bahsis Achmad on 24 Jul 2010


What is the safe way to dispose of unwanted/needed/left over drugs?Why don't we
ever hear about it?

Posted by Rita Quinn on 10 Mar 2011


I believe everything we need was created before we were and whilst greedy, deadly pharmaceutical companies become richer, humans, animals, rivers, plant life are the ones who suffer. Who REALLY rules the world??

Posted by Sue Clayton on 10 Mar 2011


What medicine do we really need and why... Consider all alternatives before you take them... We'll see how the pharmaceutical industry feels about that attitude...
Do that for everything you are going to buy...: Do I need it, why, is there an alternative.
And don't waste or accept wasting by others.
Posted by christina on 11 Mar 2011


Health is an industry today, as the man in his ambition has dipped in chemicals and poisons at all costs because both selling the drug, such as buying it in their desire to see quick results, gave his life and your pocket. As usual the big Pharmaceutical companies continue to destroy life.

Posted by metodosparaadelgazar on 09 Apr 2011



 

RELATED ARTICLES


On Ravaged Tar Sands Lands, Big Challenges for Reclamation
The mining of Canada’s tar sands has destroyed large areas of sensitive wetlands in Alberta. Oil sands companies have vowed to reclaim this land, but little restoration has occurred so far and many scientists say it is virtually impossible to rebuild these complex ecosystems.
READ MORE

As Fracking Booms, Growing Concerns About Wastewater
With hydraulic fracturing for oil and gas continuing to proliferate across the U.S., scientists and environmental activists are raising questions about whether millions of gallons of contaminated drilling fluids could be threatening water supplies and human health.
READ MORE

In Developing World, A Push to Bring E-Waste Out of Shadows
For decades, hazardous electronic waste from around the world has been processed in unsafe backyard recycling operations in Asia and Africa. Now, a small but growing movement is seeking to provide these informal collectors with incentives to sell e-waste to advanced recycling facilities.
READ MORE

As Uses of Biochar Expand, Climate Benefits Still Uncertain
Research shows that biochar made from plant fodder and even chicken manure can be used to scrub mercury from power plant emissions and clean up polluted soil. The big question is whether biochar can be produced on a sufficiently large scale to slow or reverse global warming.
READ MORE

A Legal Call to Arms to Remedy Environmental and Climate Ills
University of Oregon law professor Mary Wood says environmental laws in the United States are simply not working. In an interview with Yale Environment 360, she explains why she believes a new strategy and robust judicial intervention are needed to protect nature and the climate.
READ MORE


SEARCH


Donate to Yale Environment 360


ABOUT

Menu

SUPPORT E360

Menu

TOPICS

Menu

DEPARTMENTS

Menu

HOME PAGE

Menu