03 Jun 2008: Report

DNA Technology:
Discovering New Species

By taking bits of a single gene, scientists are using DNA barcoding to identify new species. If a portable hand-held scanning device can be developed, one ecologist says, it could “do for biodiversity what the printing press did for literacy.”

by jon r. luoma

“We just found two more!” said tropical ecologist Dan Janzen. Although the telephone connection with him was shaky, his excitement was palpable. “The first butterfly two months ago, the other just two weeks ago.”

We had reached Janzen in January at the Area de Conservacion Guanacaste, a tropical forest preserve he helped create in northwestern Costa Rica, where Janzen does much of his widely lauded biodiversity research. (Among other honors, he has been awarded the John D. and Catherine T. MacArthur Foundation’s “genius” grant.) The “two more” were newly identified species of butterfly, both luminescent blue “skippers.”

Discovery of new species is reason enough for a biologist’s enthusiasm. But Janzen clearly was jazzed by something he sees as far more momentous — a technology called DNA barcoding that made these discoveries possible in the first place, and that promises to revolutionize the otherwise daunting process of identifying the millions of species on the planet, many yet unknown and unnamed.

The term “barcoding” is actually an analogy. Much the same way that a small universal product barcode allows a retailer’s scanners to distinguish a box of tissues from a can of green beans, DNA barcoding technology allows scientists to use data from a tiny snippet of a single gene to distinguish one species from the next. Although not perfect, proponents say it is highly accurate in distinguishing almost all species of animals, with a promising variation under development for plants. At a few dollars per species it is also remarkably cheap and, compared to traditional DNA analysis, lightning fast.

Eventually, it might even be possible to embed the technology into an inexpensive handheld device. When that happens, Janzen says, “it will do for biodiversity what the printing press did for literacy.” He envisions a gadget straight out of Star Trek, an electronic reader of the catalogue of life on the planet that would enable anyone — schoolteacher, farmer, curious child — to identify “what bit of biodiversity is biting them, appealing to them, worrying them” in an instant.

For now, DNA barcoding technology is limited to scientists with access to a few large labs with the right equipment. But those new butterfly species hint at the technology’s promise. The two new skipper species actually belong to a surprisingly large cluster of recently identified species that, for years, were hiding in plain sight. As recently as 2003, scientists thought that the butterflies cataloged under the name Astraptes fulgerator were all of a single species. The butterfly adults all seemed to look exactly the same, although, mysteriously, color patterns varied among their larval caterpillars. That year, Janzen, a biology professor at the University of Pennsylvania, gave tissue samples from dozens of butterflies his team had collected to geneticist Paul Hebert, of Ontario’s University of Guelph, who had developed the barcoding technology. His analysis quickly revealed not one, but what appear to be 10 distinct species.

The two new discoveries bring the total to 12, and there may even be a few more, Janzen says. Where science once saw a generalist species that occupied a wide variety of tropical habitats, DNA barcoding has uncovered an array of species that actually specialize and occupy differing habitats. Why all mimic the same color pattern remains a mystery, although it probably lends some sort of evolutionary advantage. Janzen thinks it’s likely a don’t-bother signal to would-be predators. Unusually fast fliers, skippers should lose any appeal to hungry birds that would learn as youngsters not to waste energy on hot pursuit of the hard-to-catch.

Beyond the arena of species discovery, the technology is rapidly finding its way into an array of practical applications, from helping health agencies to control insect-borne diseases, to helping airlines and the military avoid disastrous in-flight collisions with birds, to helping regulatory agencies monitor stream and lake quality.

Hebert says that although he’d been yearning for better ways to probe biodiversity during decades of field work in places as diverse as tropical New Guinea and the Canadian Arctic, the idea of DNA barcoding quite literally came to him as an out-of-the blue inspiration. One day in the late 1990s he was in a supermarket looking at retail barcodes when it hit.

“It occurred to me that if the retail industry can use a few numbers to represent a vast array of products, why can’t we look at DNA the same way?” he says. Herbert quickly set out to determine if he could find a genetic snippet common to all species that could yield enough information to tell them apart. He needed to find a bit of DNA small enough to be sequenced quickly. And it needed to be, like a bit of DNA Goldilocks might find, “just right.” The gene had to be one that mutates quickly enough to be distinct from that of a recent evolutionary ancestor. But it also had to mutate slowly enough that barcodes would not vary markedly within a species.

Enlarge image

Photo Credit: Suz Bateson, University of Guelph
DNA barcoding revealed these look-alike blue skipper butterflies were actually two distinct species, though the pattern of their DNA compounds still had more in common with each other than with these owl species.

He found a just-right sequence on the first 648 bits of DNA of a gene called cytochrome c oxidase subunit 1 (COX1). Each long strand of DNA contains only four nucleotides: adenine, guanine, thymine, and cytosine. The complex patterns in which they are arranged determine whether your eyes are blue or brown, or whether an organism is a zebra or a zebra fish. Herbert found that by simply recording the precise order of DNA compounds, called nucleotides, on the COX1 gene, he would have a de facto barcode that would define a unique species. And it turns out that a color-coded chart of a unique A, G, T, and C sequence looks enough like a supermarket barcode to make the analogy surprisingly apt. The COX1 gene works well for animal species and at least some fungi and algae. Scientists developing barcoding technology for plants now believe that they may need to use DNA from two or three genes for accurate results.

“There was a lot of skepticism that we could deliver something that actually works,” Hebert says of the years early in this decade when he was largely frustrated in attempts to find support to pursue the technology. Some traditional taxonomists, whose core work has, since the time of Linnaeus, involved close visual comparison of species, were especially skeptical. In fact, in a few cases of hybrids and of species recently evolved from others, barcoding needs to be supported by more detailed genetic analysis or visual comparison. But it is useful in enough cases, including about 98 percent of animal species, that barcoding projects are now growing explosively.

In one major effort, the Natural History Museum in London and the Smithsonian Institution in Washington D.C. are collaborating on a project to barcode all of the world’s known mosquito species. That should lead to far better targeting of species that are vectors of malaria and other devastating diseases. The project, which began only in early 2007, has already solved a puzzle in South America. An apparent single species called Anopheles oswaldoi ranges across a wide area but, curiously, seemed to be a malaria vector only on some of its range. DNA barcoding revealed it to be four distinct species, only one of which appears to be a disease carrier. Future control programs can now focus on controlling the waterborne larvae of only the harmful species.

In May, 2007, the U.S. Food and Drug Administration used barcoding to issue a warning that a shipment of supposed monkfish from China actually appeared to be a species of toxic pufferfish. And the U.S. Air Force and the Federal Aviation Administration (FAA) have helped fund a Smithsonian sponsored barcoding of all North American bird species. On the pure discovery side, the study has given scientists new leads on deciding whether some subpopulations are their own species. But the military and FAA helped fund it for more immediately practical reasons. Scientists are now using blood and tissue samples collected from aircraft to try to better understand which birds pose collision risks and where. In terms of numbers of species barcoded so far, said Hebert in January, “We’re sitting at 35,000 species, and feeling pretty happy about that.” Today, almost all barcoding is being done at a handful of labs in North America, Herbert’s own barcoding “factory” at the University of Guelph, and a facility at the Smithsonian. But he says that if funding for the new multination International Barcode of Life (iBOL) coalition comes together, 500,000 of the world’s catalogue of species could be barcoded in another five years. That would be the first step in perfecting an iPOD-like species reader that would contain a miniature DNA sequencer along with a tiny memory chip crammed with millions of barcodes, or what Herbert calls “life on the planet in a box.”

Another technological leap is likely to help. The Guelph lab recently obtained funding from the government of Canada to purchase a pair of devices that will allow DNA analysis in huge volume at blinding speeds. Conventional equipment can now provide 96 DNA “reads” in about two hours, or about 400,000 barcode records in a year. The new device can provide those 400,000 records in a single two hour run. As the equipment comes on line, Hebert envisions a new era of “environmental barcoding” that sorts out diverse assemblages of species from big unsorted samples. Picture, he says, a kilogram of insects collected from a rainforest canopy. “We can mix them into a bug milkshake,” he says, “toss them into the hopper, and tell you in a couple of hours what the 1000 species you’ve collected are. Or we could hoover up a little bit of stream bottom, and quickly tell you what species are present.”

POSTED ON 03 Jun 2008 IN Biodiversity Science & Technology Central & South America 


DNA Bar coding seems to have lot of potential to resolve species complexes and distinguish allied species. However, this new technique can't dilute the importance of classical taxonomy based on morphology as the individuals exist and have specific morphology and DNA can be extracted from fresh and to some extent not too old Preserved/ dried specimens. So in away it authenticates classical taxonomy. Advantage of Bar coding is requirement of just a part of body of the organism; while description of species requires several specimens and also both sexes.

Posted by Dr A P Singh;Chandigarh; India on 21 Jun 2010

Comments have been closed on this feature.
jon r. luomaABOUT THE AUTHOR
Jon R. Luoma, a contributing editor at Audubon, has written about environmental and science topics for The New York Times, and for such magazines as National Geographic and Discover. His third book, The Hidden Forest: Biography of an Ecosystem, has been released in a new edition by Oregon State University Press.



Mimicking Nature, New Designs
Ease Fish Passage Around Dams

Originating in Europe, "nature-like" fishways are now being constructed on some U.S. rivers where removing dams is not an option. Unlike traditional fish ladders, these passages use a natural approach aimed at significantly increasing once-abundant runs of migratory fish.

On Ravaged Tar Sands Lands,
Big Challenges for Reclamation

The mining of Canada’s tar sands has destroyed large areas of sensitive wetlands in Alberta. Oil sands companies have vowed to reclaim this land, but little restoration has occurred so far and many scientists say it is virtually impossible to rebuild these complex ecosystems.

Rebuilding the Natural World:
A Shift in Ecological Restoration

From forests in Queens to wetlands in China, planners and scientists are promoting a new approach that incorporates experiments into landscape restoration projects to determine what works to the long-term benefit of nature and what does not.

Amid Elephant Slaughter,
Ivory Trade in U.S. Continues

In the last year, the U.S. government and nonprofits have put a spotlight on the illegal poaching of Africa’s elephants and Asia’s insatiable demand for ivory. But the media coverage has ignored a dirty secret: The U.S. has its own large ivory trade that has not been adequately regulated.

The Ambitious Restoration of
An Undammed Western River

With the dismantling of two dams on Washington state’s Elwha River, the world’s largest dam removal project is almost complete. Now, in one of the most extensive U.S. ecological restorations ever attempted, efforts are underway to revive one of the Pacific Northwest’s great salmon rivers.


MORE IN Reports

As Himalayan Glaciers Melt,
Two Towns Face the Fallout

by daniel grossman
For two towns in northern India, melting glaciers have had very different impacts — one town has benefited from flowing streams and bountiful harvests; but the other has seen its water supplies dry up and now is being forced to relocate.

Designing Wetlands to Remove
Drugs and Chemical Pollutants

by carina storrs
Drinking water supplies around the world often contain trace amounts of pharmaceuticals and synthetic compounds that may be harmful to human health. One solution being tried in the U.S. and Europe is to construct man-made wetlands that naturally degrade these contaminants.

On the River Nile, a Move to
Avert a Conflict Over Water

by fred pearce
Ethiopia’s plans to build Africa’s largest hydroelectric dam on the Nile have sparked tensions with Egypt, which depends on the river to irrigate its arid land. But after years of tensions, an international agreement to share the Nile’s waters may be in sight.

Perennial Rice: In Search of a
Greener, Hardier Staple Crop

by winifred bird
Scientists have long sought to create a perennial rice that would avoid the damage to the land caused by the necessity of planting annually. Now, Chinese researchers appear close to developing this new breed of rice, an achievement that could have major environmental benefits.

In Kenya’s Mountain Forests,
A New Path to Conservation

by fred pearce
Kenya’s high-elevation forests are the source for most of the water on which the drought-plagued nation depends. Now, after decades of government-abetted abuse of these regions, a new conservation strategy of working with local communities is showing signs of success.

Will New Obstacles Dim
Hawaii’s Solar Power Surge?

by erica gies
Blessed with lots of sun and keen to cut its reliance on imported oil, Hawaii has moved to the forefront of residential solar installations in the U.S. But financial and technical hurdles are slowing the state’s drive to generate 40 percent of its electricity from renewable energy by 2030.

Atlantic Sturgeon: An Ancient
Fish Struggles Against the Flow

by ted williams
Once abundant in the rivers of eastern North America, the Atlantic sturgeon has suffered a catastrophic crash in its populations. But new protections under the U.S. Endangered Species Act are giving reason for hope for one of the world’s oldest fish species.

Agricultural Movement Tackles
Challenges of a Warming World

by lisa palmer
With temperatures rising and extreme weather becoming more frequent, the “climate-smart agriculture” campaign is using a host of measures — from new planting practices to improved water management — to keep farmers ahead of the disruptive impacts of climate change.

Natural Gas Boom Brings Major
Growth for U.S. Chemical Plants

by rachel cernansky
The surge in U.S. production of shale gas is leading to the rapid expansion of chemical and manufacturing plants that use the gas as feedstock. But environmentalists worry these new facilities will bring further harm to industrialized regions already bearing a heavy pollution burden.

How Technology Is Protecting
World’s Richest Marine Reserve

by christopher pala
After years of fitful starts, the Pacific island nation of Kiribati this month banned all commercial fishing inside its huge marine reserve. New satellite transponder technology is now helping ensure that the ban succeeds in keeping out the big fishing fleets.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America


A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video, chronicles a Chinese village’s fight against a polluting chemical plant. It was nominated for a 2011 Academy Award for Best Documentary Short.
Watch the video.

header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Badru's Story
Badru’s Story, winner of the Yale Environment 360 Video Contest, documents the work of African researchers monitoring wildlife in Uganda's remote Bwindi Impenetrable National Park.
Watch the video.