09 Mar 2009: Report

Finding New Species:
The Golden Age of Discovery

Aided by new access to remote regions, researchers have been discovering new species at a record pace — 16,969 in 2006 alone. The challenge now is to preserve threatened ecosystems before these species, and others yet unknown, are lost.

by bruce stutz

Even as biodiversity seems to be everywhere under threat or in retreat, scientists are discovering and naming new species at a greater rate than anytime during taxonomy’s 250-year history. Some 25 percent of all known amphibian species were discovered only over the last ten years, a period when their numbers worldwide have been in desperate decline. Since 1993 the number of known mammal species has increased 10 percent.

A 2008 study by the Arizona State University International Institute for Species Exploration reported 16,969 new species of plants and animals described in 2006 alone (not including new species of microbial life), which amounts to some 1 percent of Earth’s 1.8 million known species.

While insects accounted for more than half of these newfound species — “We’re finding them at a pace about twice the overall historic average,” says the Arizona Institute’s director, Quentin Wheeler — the total included 2,000 plants and 1,000 vertebrates, among them 185 mammals, 196 reptiles, 108 amphibians, and 37 birds.

The new finds aren’t small cryptic oddities. The recent mammal discoveries range in size from a 3-gram shrew-tenrec to a 100-kilogram antelope. They include a hundred new bat species, a rodent species thought extinct for 11 million years, a pygmy deer from Bhutan, a macaque from the Himalayan foothills, a white titi monkey from Brazil, and a pygmy sloth from Panama. While most of the finds come from the world’s still underexplored tropical forests, discoveries have been made in mountains, deserts, and even in well-surveyed temperate regions.

Many of the new finds result from good old-fashioned fieldwork, especially from expeditions into regions previously inaccessible due to lack of roads or in some cases off limits due to war or politics. Google Earth has given scientists a way to scout terrain and cheaply reconnoiter habitats likely to produce new finds. Taxonomists at work in museums of natural history still find as yet unnamed specimens among the collections of preserved specimens.

Many of the discoveries result from new techniques in molecular genetics. These can show that what scientists thought to be a single widely distributed species is not one species at all, but rather a collection of small populations that look alike but are genetically and evolutionarily distinct. The very common dusky salamander, for instance, long thought to be a single population ranging throughout the U.S. Appalachian and Adirondack Mountains, from New York to Alabama, has now been found to made up of four separate species. While some have suggested that genetic “hair-splitting” has inflated the number of new species, recent studies have shown that “taxonomic inflation” is the exception, not the rule.

The new discoveries are all welcome, says Wheeler, but also worrisome. For as much as they expand our knowledge of the world’s ecosystems, they also reflect “our profound ignorance of many of the most species-rich taxa inhabiting our planet.”

The rate of discovery, in fact, may be telling us that estimates of the number of species still unknown — ranging from three to ten million to the tens of millions — may be far too low. Discoveries in hot springs or in deep ocean vents, for instance, hint at entirely new and unexplored ecosystems. Extinction rates may therefore also have been underestimated, meaning
Many more species than previously thought may have been lost without ever having been found.
that many more species than previously thought have been lost without ever having been found.

What especially concerns Wheeler and other researchers is that the taxonomic evidence demonstrates that, unlike human beings that can adapt to life across a wide range of conditions and habitats, most species of plants and animals have evolved to survive only within a narrow range of conditions.

In a February 2009, paper in the Proceedings of the National Academy of Sciences, Gerardo Ceballos and Paul Ehrlich found that 81 percent of mammal species discovered over the last 15 years have just such restricted distributions. A group of lemurs in Madagascar, for example, once thought to be composed of two species, was found, through genetic studies, to be made up of at least 13 species. A golden capuchin monkey, discovered in 2006, survives only in a 200-hectare remnant of forest surrounded by sugar plantations.

A common skipper butterfly species was found to be composed of ten species, each with a distinctive life history. In a place such as Sri Lanka, writes Jörn Köhler of the Department of Zoology at the Hessisches Landesmuseum in Darmstadt, Germany, genetic distinctions could double the number of known amphibian species. “The recognition of new species may exacerbate an organism’s threat status, because it can result in subdivision of a once widespread species into numerous species, each with a smaller and, hence, a more precarious distribution.”

In this “new age of discovery,” as Ceballos and Ehrlich call it, conservationists may have to rethink their paradigms and priorities. If the number and diversity of species is so much greater than previously thought, they suggest that it may be prudent to preserve as many genetically distinct species as possible. Although scientists recognize that there’s species redundancy built into most ecosystems, the problem, write Ehrich and Ceballos, is that “no one is in a position to decide the full conservation value of any species . . . let alone the other more or less distinct entities now being revealed.”

Counterintuitive as it may sound, Ehrlich told me in an e-mail that “lacking any other information, one would put (conservation) effort into the (species) with a small range.” Such species may be key to the survival of their small ecosystem and their loss, even among many related species, can alter an entire ecosystem.

“Many newly discovered entities may supply previously unrecognized ecosystem services,” write Ceballos and Ehrlich. The effects can be insidious. In the Panamanian tropical forests, for instance, researchers found that where there are fewer rodent species, more of the remaining species carry Hantaviruses known to infect humans.

These concerns become most evident in the Earth’s biodiversity hotspots such as Madagascar, India, Indonesia, South America, and Southeast Asia. Along the Mekong River watershed, for instance, more than a thousand
A long-whiskered rodent called the Kha-Nyou was “discovered” lying for sale on a table in a local market.
new species have been discovered over the last ten years — an average of two new species each week — and the pace of discovery appears to be unabated. Running 3,000 miles through China, Myanmar, Laos, Thailand, Cambodia, and Vietnam, the Mekong and its surrounding mountains and forests were always known to hold extraordinary reserves of biodiversity, more species per unit area than any river other than the Amazon. The tropical forests of the Annamite Mountains east of the river along the border of Laos and Vietnam were a lost world that had persisted through the last ice age. These were some of the least explored places on earth, made even more inaccessible by political instability and war.

Michael Hedemark, head of Wildlife Conservation Society’s Laos programs, says that beginning in the 1990s the changed political environment brought about a new generation of national scientists and increased cooperation between national and international science and conservation organizations. Not long after, new species began turning up everywhere, even in local markets where new roads led to increases in wildlife hunting and trade.

The long whiskered rodent called the Kha-Nyou, whose last relations died off some 11 million years ago, was “discovered” lying for sale on a table next to some vegetables by WCS researcher Robert Timmins. It was in a market that Timmins also found a new species of striped Sumatran rabbit.

Also found in the Annamites have been rare, gray and black-striped civets — Owston’s civet and spotted linsang; two new species of deer-like muntjac — the large-antlered muntjac and the dark Annamite muntjac (identified by molecular analysis of found antlers); and a new bat species, the Laos roundleaf bat. New species of amphibians — salamanders and frogs — have also been increasing the tally of new species in Laos.

But peace has also begun exacting a cost on these emergent reserves of biodiversity. Some 320 million people live in countries of the Mekong
One researcher hopes the flood of discovery will inspire a “taxonomic moon-shot,” a worldwide race to find new species.
watershed, and new economic development has engendered unsustainable logging, fishing, and mining. New dams threaten species dependent upon free-flowing streams. New roads enhance illegal hunting. Within a couple of months of discovering a new species of salamander in Laos, the Wildlife Conservation Society found it was commanding high prices in the Japanese pet trade. Forests are being cut to provide land for cash crops such as cacao, coffee, and sugar cane.

If biodiversity conservation is difficult enough in good times, Hedemark told me, he worries what hard economic times will mean.

Researchers recognize that their window on new discoveries can close quickly. A single bulldozer or a day’s logging can destroy a species’ entire habitat. Wheeler told me of a researcher who discovered a new species of legume in Madagascar. By the time her finding was published, the species no longer existed.

Wheeler hopes that the flood of new discoveries will restore the reputation of taxonomy, and give new urgency to developments in a science that he says has for too long been considered an arcane exercise in describing species or that had little value in conservation. Maybe, he says, the attention will inspire a “taxonomic moon-shot,” a worldwide race to find new species.

“The fact is that we depend on taxonomy to tell us the role species have in ecosystems,” Wheeler notes. “We’re not going to understand a species’ ecological place without understanding its evolutionary significance. For that we need good baseline information.” Otherwise, he says, echoing Ceballos and Ehrlich, “how do I know whether to save a thousand species or a single unique species?”

For their part, Ceballos and Ehrlich believe the threat to species is so overwhelming that conservation efforts must take precedence over taxonomic studies. “It will at least,” they told me, “provide time to do the taxonomic studies as we go along.“

The tragic irony, says Wheeler, is that in the midst of this taxonomic golden age, “we could lose more species in this century than we’ve found in the last two.”

POSTED ON 09 Mar 2009 IN Biodiversity Climate Policy & Politics Africa Asia North America 


What is also sad - and compounds the magnitude of the loss - is that much of the intellectual property associated with these plants and animals is being lost as various indigenous peoples are marginalized, forced out of traditional lands, or slowly assimilated into the dominant society. A vast amount of potential medicinal, ecological, and other knowledge is being lost as a result.
Posted by Indigenous Peoples Advocate on 10 Mar 2009

Interesting information on discovered species and extinct species:


Posted by John Larton on 23 Mar 2009

In an era dominating by reports of declining wildlife numbers – due to poaching, human-wildlife conflicts and prolonged drought – these findings are a breath of fresh air.

But I do agree that the findings are equally alarming. If over 16,000 animal species can be discovered in a single year, just how many unknown species are getting wiped off the face of the earth even before the world knows they exist?

Posted by Ateenyi on 03 Feb 2010

Comments have been closed on this feature.
Bruce Stutz writes on science, nature, and the environment. A former editor-in-chief of Natural History, he is a contributing editor to OnEarth. He has written for the New York Times, The Christian Science Monitor, The Washington Post, Discover and Audubon. He is the author of Natural Lives, Modern Times and Chasing Spring, An American Journey Through a Changing Season. In a recent article for Yale e360, Stutz wrote about how planners are trying to tackle sprawl in Europe.



A Delicate Balance: Protecting
Northwest’s Glass Sponge Reefs

Rare and extensive reefs of glass sponges are found only one place on earth – a stretch of the Pacific Northwest coast. Now, efforts are underway to identify and protect these fragile formations before they are obliterated by fishing vessels that trawl the bottom.

How One African Village Learned
To Live with Its Wildlife and Prosper

The second runner-up in the Yale Environment 360 Video Contest tells the story of the residents of a forest village in central Mozambique who have helped create a tourist destination centered on an elephant population that once wreaked havoc in their community.

An Up-Close View of Bristol Bay’s
Astonishing Sockeye Salmon Runs

The first runner-up in the 2015 Yale Environment 360 Video Contest captures stunning images of the abundant sockeye salmon runs in Bristol Bay, Alaska, and tells the story of a 70-year-old project that has been studying the millions of salmon that annually pour into the region’s rivers to spawn.

Natura 2000: EU Reserves Are
Facing Development Pressures

An astonishing 18 percent of the European Union’s land area is protected under a network of preserves known as Natura 2000. Now, at the urging of business interests and farmers, the EU is examining whether regulations on development in these areas should be loosened.

Global Extinction Rates: Why
Do Estimates Vary So Wildly?

Is it 150 species a day or 24 a day or far less than that? Prominent scientists cite dramatically different numbers when estimating the rate at which species are going extinct. Why is that?


MORE IN Reports

For Storing Electricity, Utilities
Are Turning to Pumped Hydro

by john roach
High-tech batteries may be garnering the headlines. But utilities from Spain to China are increasingly relying on pumped storage hydroelectricity – first used in the 1890s – to overcome the intermittent nature of wind and solar power.

On Thin Ice: Big Northern Lakes
Are Being Rapidly Transformed

by cheryl katz
As temperatures rise, the world’s iconic northern lakes are undergoing major changes that include swiftly warming waters, diminished ice cover, and outbreaks of harmful algae. Now, a global consortium of scientists is trying to assess the toll.

The Haunting Legacy of
South Africa’s Gold Mines

by mark olalde
Thousands of abandoned gold mines are scattered across South Africa, polluting the water with toxics and filling the air with noxious dust. For the millions of people who live around these derelict sites, the health impacts can be severe.

The Sushi Project: Farming Fish
And Rice in California's Fields

by jacques leslie
Innovative projects in California are using flooded rice fields to rear threatened species of Pacific salmon, mimicking the rich floodplains where juvenile salmon once thrived. This technique also shows promise for growing forage fish, which are increasingly threatened in the wild.

A Delicate Balance: Protecting
Northwest’s Glass Sponge Reefs

by nicola jones
Rare and extensive reefs of glass sponges are found only one place on earth – a stretch of the Pacific Northwest coast. Now, efforts are underway to identify and protect these fragile formations before they are obliterated by fishing vessels that trawl the bottom.

As the Fracking Boom Spreads,
One Watershed Draws the Line

by bruce stutz
After spreading across Pennsylvania, fracking for natural gas has run into government bans in the Delaware River watershed. The basins of the Delaware and nearby Susquehanna River offer a sharp contrast between what happens in places that allow fracking and those that do not.

Will Tidal and Wave Energy
Ever Live Up to Their Potential?

by sophia v. schweitzer
As solar and wind power grow, another renewable energy source with vast potential — the power of tides and waves — continues to lag far behind. But progress is now being made as governments and the private sector step up efforts to bring marine energy into the mainstream.

The Rapid and Startling Decline
Of World’s Vast Boreal Forests

by jim robbins
Scientists are becoming increasingly concerned about the fate of the huge boreal forest that spans from Scandinavia to northern Canada. Unprecedented warming in the region is jeopardizing the future of a critical ecosystem that makes up nearly a third of the earth’s forest cover.

Northern Forests Emerge
As the New Global Tinderbox

by ed struzik
Rapidly rising temperatures, changes in precipitation, and increased lightning strikes are leading to ever-larger wildfires in the northern forests of Alaska, Canada, and Siberia, with potentially severe ecological consequences.

For U.S. Tribes, a Movement to
Revive Native Foods and Lands

by cheryl katz
On ancestral lands, the Fond du Lac band in Minnesota is planting wild rice and restoring wetlands damaged by dams, industry, and logging. Their efforts are part of a growing trend by Native Americans to bring back traditional food sources and heal scarred landscapes.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

A 2015 Yale e360 Video Contest winner captures stunning images of wild salmon runs in Alaska.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.


A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.