27 Oct 2015: E360 Special Report

African Lights: Microgrids Are
Bringing Power to Rural Kenya

Small-scale microgrids are increasingly seen as the most promising way to bring electricity to the 1.3 billion people worldwide who currently lack it. In Kenya, an innovative solar company is using microgrids to deliver power to villages deep in the African bush.

by fred pearce

Plugging into electricity for the first time is a big deal. Ask Peter Okoth. Until late last year, he struggled to make a go of his bar on the main street in Entasopia, a small, dusty town in Kenya’s Rift Valley, five hours from the capital Nairobi and 30 miles from the nearest grid power line. Then, he hooked up to a new solar-powered microgrid that serves local homes and businesses.

Now Okoth has eleven light bulbs, he says proudly — and enough power to run a TV and a sound system for his customers. Seventy people show up some evenings to watch, listen and buy his food and drink. His profits will soon

View Gallery

Fred Pearce
SteamaCo agent John Pambio monitors the controls at the solar-panel hub in Entasopia.
buy a refrigerator to keep the beer cold in the searing desert heat, and a big screen to show satellite sports channels. “We will be staying open till midnight,” he says. And he has just bought construction materials for ten guest rooms. “When you next come, you must stay here.”

Most settlements in rural Kenya are dark at night. Only a third of the East African country’s residents have access to the national power grid. Harvesting the sun makes obvious sense in places like Entasopia. Hundred-dollar photovoltaic (PV) panels for installation on home roofs have been on sale for years. But the meager five watts that most such systems provide is only enough to power a couple of LED lamps each evening and a mobile phone charging point, and the batteries constantly need replacing. The country is full of discarded PV cells, defunct batteries, and disappointed customers.

But now, larger central village PV units linked by underground cable to dozens of houses and business are starting to transform lives. For a ten-dollar installation fee, the people of Entasopia can connect to a village microgrid and buy a share of a thousand times as much power. Village homes are filling with household appliances like refrigerators and washing machines, and the businesses on the main street are powering everything from welding equipment and fuel pumps to hair driers.

Microgrids are small electricity generation and distribution systems that operate independently of larger grids. Typically they rely on local sources of renewable energy, such as river flows, wind, biomass, or, most widely, the power of the sun. There are no official statistics on how many there are, or what their total power output is. But a recent study by U.S.-based Navigant Research, which studies new energy technologies, suggested that their combined generating capacity might now exceed 750 megawatts worldwide. They are, says Daniel Kammen, of the University of California,
Microgrids answer a criticism of rooftop solar, which some say can lock communities into energy poverty.
Berkeley, “a true hot-bed of innovation popping up all over the world.”

In countries such as Kenya, whose economies are growing faster than either conventional, centralized electricity generation or power grids, the potential of microgrids to electrify powerless communities is huge. Many believe they provide the only likely route to deliver UN secretary-general Ban Ki-moon’s goal of bringing electricity to the 1.3 billion mostly rural people globally who currently lack it. And they answer a charge often made against roof-top solar power systems, which critics say can lock communities into energy poverty by offering only tiny amounts of power for each household.

Entasopia is as remote as it gets. It is close to the border with Tanzania, at the end of a bumpy laterite road that winds its way from Magadi, a town some 30 miles to the east. Its single street comprises houses fronted by tin-roofed buildings with businesses ranging from butchers and general stores to bars and mobile phone shops. It is where Maasai livestock herders in their bright traditional dress come to buy and sell, topping up their mobile phones before disappearing back into the bush. And it is where people from other Kenyan tribes such as the Luo, Kikuyu and Kamba have congregated since an irrigation project fed by rivers from nearby hills started watering fields of fruit and vegetables for sale to Kenyan cities.

Joseph Nyagilo, field manager for microgrid pioneer SteamaCo, picked out Entasopia for a microgrid in 2014 because of the town’s strong business activity, which he believed could benefit from the extra power that a such a

View Gallery

Fred Pearce
Nancy Kasia now uses solar power to pump fuel at the filling station she owns in Entasopia.
system can provide. He is proud of the transformation.

At the village filling station, Nancy Kaisa uses solar power to pump fuel. “I had a diesel generator before, but this is much cheaper and easier,” she explains. John Owino, a repairman squatting in the sun outside his workshop, says he can now carry out welding repairs that once had to be sent to distant towns. And Okoth, the entrepreneurial bar boss, said lights meant he can now get up and start work at 4 a.m. Only the owner of the kiosk selling rooftop PV panels seemed gloomy. He was getting on his motorbike to find sales in a neighboring village that did not have a microgrid.

“Light from roof systems can improve quality of life, but only microgrids can lift people out of poverty,” says Emily Moder, SteamaCo’s software manager. “They are the next step up. And by allowing people to build businesses and another source of income, they improve the resilience of rural communities against drought or climate change.”

But SteamaCo is going further. In the past three years, it has been pioneering the use of smart meters in microgrids, and it now has 25 village grids across Kenya, supplying up to 10,000 people and businesses. The
SteamaCo’s solar panels were installed in the village chief’s yard at a cost of $75,000.
idea is to link the supply hardware to pre-payment services that use the country’s popular mobile phone-based banking system, M-Pesa. Cloud-based software keeps track of supplies and payments, alerting customers by text messaging when their credit runs low. There are no contracts, no bills, and no revenue collection problems. Customers can top up their credit, in amounts as small as a few cents. But once the credit expires, the lights go out.

Entasopia’s PV hub, renting space in the yard of the village chief, cost $75,000 to install. It has 24 panels with a maximum generating capacity of 5.6 kilowatts. A control box below houses the smart meter that measures and controls power to each of the 64 customers in town and also communicates remotely with payments software, cutting off power when credit is exhausted. In remote areas such as Entasopia, where wi-fi is largely absent, all data is sent by SMS. “One bar of mobile signal is all we need,” says Moder. “We can be everywhere.”

The site agent keeping a day-to-day eye on things in Entasopia is John Pambio, a young electrical engineer living down the street from the village chief, who also runs a shop repairing mobile phones and TVs. Pambio cleans the PV cells once a week and troubleshoots for customers suffering outages, trips, or damaged cables. The biggest power demand, he says, is at night, when lights, TVs, and sound systems come on. That is not a great match with solar energy production, which of course is in daylight hours. But, like most village hubs, Entasopia has battery storage sufficient for at least 24 hours of use.

Commercial microgrid PV systems still charge prices for power that are quite high. SteamaCo — and the microgrid partners that it increasingly licenses — charge between two and four dollars per kilowatt-hour. That delivers lighting more cheaply than kerosene, and power more cheaply than a diesel generator. But it is double the price of state-subsidized grid power in a city like Nairobi.

SteamaCo co-founder and chief technical officer Sam Duby believes that, just as microgrids are changing life in villages like Entasopia, so they have the potential to transform the prospects for scaling up solar energy elsewhere in Africa and the developing world.

First, replacing roof systems with village microgrids provides for the first time the amount and reliability of power that rural people want, which is enough to change their lives and livelihoods. Secondly, the smart metering that links village supply systems to pay-as-you-go charging networks, resolves the constant bugbear of village power systems — how to collect
Microgrids provide the amount and reliability of power that rural people want, which is enough to change their lives.
revenues from customers in poor and remote places. And thirdly, the data supplied by the smart metering has the potential to unlock the major financing that has so far shied away from committing to solar power in developing countries like Kenya.

“Steama” is Swahili for “power.” But for Duby, the power is as much about data as electricity. Now, when he and his potential investors switch on their laptops in Nairobi and access the dashboard where data from the villages and payments systems is collated and analyzed, they can probe how thousands of the world’s poorest people use electricity and what encourages them to use more.

“Nobody has had this kind of data before,” says Moder. “It lowers barriers to investment, because the data provide greater certainly about payback. You can give investors real projections that aren’t a total guess.” Duby says the data also offer governments or donors the chance to directly subsidize solar power as it is purchased — a microgrid version of the feed-in tariffs that have kick-started solar and wind power in Europe.

The stories the data from places like Entasopia tell are not all good news. For instance, there is the experience of Margaret Mwangi, who set up a hair salon in the room behind her tiny general store across from Okoth’s bar. When Mwangi got solar power, she bought a refrigerator for selling cold drinks and a blow-drier for the salon. But each head of African hair takes 30 minutes to dry, and the power needed is costing too much. “Last month I paid 14,000 shillings [about $140] for electricity,” she complains. “I can’t afford that.” She has stopped paying, and her shop is now dark.

The reason for her problem is clear, says Nyagilo, the SteamCo field manager. Mwangi’s blow-drier is among the biggest power users in the village. Back in Nairobi they can see the power surge when she turns it on. Thirty minutes of use costs double the 50 cents extra that Mwangi charges her customers for the blow dry, but she says she dare not charge more. “Margaret used to be our biggest customer here. We want her to stay,” Nyagilo says. He is planning to offer her a special deal to get her back on line — maybe a flat-rate $50-a-month charge.

Back at SteamaCo’s headquarters in a small business park outside Nairobi, Moder opens up the data dashboard on her laptop. Zooming in on the Entasopia numbers, she trawls to see how much power Mwangi, Okoth, and their other customers tap from the microgrid, and how much they pay and when. Most customers top up 50 cents each evening to watch TV and keep the lights on. Some lose track of what they are paying and need help. “We need different tariff structures for different people,” she says. “But
Even though our customers are poor, they have purchasing power and know how to use it.’
with smart meters that is easy to do.”

SteamaCo’s origins lie in an NGO called Access:Energy set up in 2009 by Duby and current CEO Harrsion Leaf on the shores of Lake Victoria. It trained local craftsmen in making wind turbines from scrap metal. But its technology has come a long way. Renamed SteamaCo, it installed its first microgrid system with smart metering in 2013, on Remba, a remote fishing island in Lake Victoria. Since then, expansion has been fast. By mid-October, the company had 25 village grids across Kenya, with an additional five in Tanzania, Benin, Rwanda and Nepal, and five more ready for completion in Kenya by year’s end. “In 2016, we want hundreds of grids in dozens of countries,” says Moder.

In its first years, the company financed its work with aid money and research grants. But early investors also included the Vulcan Capital, set up by Microsoft founder and philanthropist Paul Allen. And now Duby and Leaf are raising money from equity funds that want a commercial return from the revenues of selling electricity. “We want to show this business can be profitable,” says Moder. “Even though our customers are poor, they have purchasing power and know how to use it. They don’t want charity, and we treat them as responsible consumers.” For instance, with revenues above $10,000 in its first year, SteamaCo’s microgrid in Entasopia is likely to have paid for itself within a decade.

SteamaCo provides a very personal service. Nyagilo has toured hundreds of remote villages in the past three years, knocking on doors and probing business accounts to conduct instant assessments of their suitability for a microgrid. And he keeps returning to check on his customers. These days,


Indian Microgrids Aim to
Bring Millions Out of Darkness

Indian microgrids
Powered by solar panels and biomass, microgrids are spreading slowly across India, where 300 million people live without electricity. But can these off-grid technologies be scaled-up to bring low-carbon power to tens of millions of people?
when he visits Entasopia, he is besieged by people who turned down connection the first time around but now want to sign up.

Soon such personal service from one of the company’s top officers will probably be replaced by more anonymous operations, as companies purchase SteamaCo’s hardware and software. Most likely, they will communicate with customers via call centers. But, if smart microgrids take hold at the pace their proponents hope, the change to rural economies and lifestyles in Kenya and elsewhere in the developing world could be massive and permanent.

When the sun sets in the Rift Valley now, the lights come on in Entasopia. Instead of retreating into their homes, villagers hit the street, shop at the stalls, and head for the bars, where drinking cool beer and watching the early-evening TV news is still a novelty. Soon Peter Okoth and rival bar operators will switch on their sound systems. The night is young.

On the road out, Nyagilo passes the neighboring village of Ngurumani, which is swathed in darkness. “This,” he says, “is our next village for a microgrid.”

POSTED ON 27 Oct 2015 IN Biodiversity Business & Innovation Business & Innovation Energy Forests Policy & Politics Science & Technology Urbanization Africa Central & South America 


Nice story.

Would be nice too to know what scope there may be
to break down some centralised grids by severing
major connectors — after ensuring there is adequate
localised power supply. Advantages would be to
minimise transmission losses, increase energy
security, and help build local business autonomy.

There are many places where centralised grids are
overburdened and prone to voltage instability and
Posted by Chris Harries on 29 Oct 2015

The interesting thing about this and similar articles (and there are many) on solar energy and lighting the poor is the irony in it. Business develop on aid money as the technology is projected as an Innovation — or even better still, ‘social innovation’ that benefits the poor. At its root, however, is profit. Business is incubated with free money from development agencies and grown on the backs of the poor — in the name of providing them with a service they otherwise could or would not get or afford, despite the fact that access to clean energy should really be their right — a human right to energy so that children can learn at night, girls education is seriously anchored, women feel secure to go out, etc, etc.

The humanity of the innovations, it seems nowadays can only be obtained through a business where the poor who should access power from state resources will be made to pay several times what a state subsidised customer in Nairobi or Lagos will pay for grid-based electricity. Just like the sale of water, a basic commodity, sold to the poor in African and Asian poverty settlements (so-called ‘slums’) at at street corner standpipe that goes at several times the cost of piped water in richer homes.

Human rights access cannot be pegged on affordability when jobs, decent paid work or adequate social welfare are not a right. Life and human dignity must not be at the mercy of the market and affordability. This discussion on innovation must include, of necessity, an understanding and exposure of the human rights angles of so-called innovations.

The work done by innovative pioneers is wonderful, and they make great sacrifices of time and money, and their hearts are in the right place. However, many are trapped by the emerging innovation of the market as the answer and obliged, to grow and scale their innovations, to submit to the profit motive. This makes the humanity of the work retreat into the background as the emerging business grapples with survival in order to continue doing the good work of meeting the needs of the poor — but now without its compassion. Access then, whether of water or electricity or other commodity is quickly restricted to those who can pay. Those most in need are often not able to pay, largely women and children and disabled and refugees. Because the market has now a solution for the poor, the state retreats even further, leaving the most vulnerable doubly stigmatized — for refusing to buy the allegedly ‘low-cost’ NGO-based solutions to their problems.

Posted by Kazi Pwani on 29 Oct 2015

I am just asking what are all the requirements for
installing a full Solar Powered Energy for a home
which does not want to connect to the national grid.

This should include even the electrical installations.

The house is in the tropics where sun is available
12hrs a day for the whole year.

John Okwaroh

Posted by John Okwaroh on 25 Feb 2016

Hello John,

Send me a list of equipment you want to power.
I will help you with the requirements.
Posted by Emma Deremolu on 08 Mar 2016

Hi, Thank you for your very interesting and well-
written article. I am a Christian, and am
interested in supporting an outreach of
Wellspring International, and there is an
orphanage in Maai-Mahiu, Kenya, and I am
curious if you know if they use solar energy, etc.
I would like to understand their needs at first
prior to contacting them. I feel, that way, they
may feel more comfortable bringing up their
particular needs so that we can meet their needs
in a more efficient manner. Thank you for any
information that you may be able to provide.

Washington, DC
Posted by Daniel on 28 Mar 2016


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

Fred Pearce is a freelance author and journalist based in the U.K. He is a contributing writer for Yale Environment 360 and is the author of numerous books, including The Land Grabbers. Previously for Yale Environment 360, he has written about major discrepancies in tallying extinction rates of species across the globe and whether the upcoming Paris climate talks will be too little and too late.



Obama’s Environmental Legacy:
How Much Can Trump Undo?

Few groups were as shocked and chagrined by Donald Trump’s victory as the environmental community. Yale Environment 360 asked environmentalists, academics, and pro-business representatives just how far Trump might roll back President Obama’s environmental initiatives.

What a Trump Win Means
For the Global Climate Fight

Donald Trump’s ascension to the presidency signals an end to American leadership on international climate policy. With the withdrawal of U.S. support, efforts to implement the Paris agreement and avoid the most devastating consequences of global warming have suffered a huge blow.

On College Campuses, Signs of
Progress on Renewable Energy

U.S. colleges and universities are increasingly deploying solar arrays and other forms of renewable energy. Yet most institutions have a long way to go if they are to meet their goal of being carbon neutral in the coming decades.

For European Wind Industry,
Offshore Projects Are Booming

As Europe’s wind energy production rises dramatically, offshore turbines are proliferating from the Irish Sea to the Baltic Sea. It’s all part of the European Union’s strong push away from fossil fuels and toward renewables.

In Fukushima, A Bitter Legacy
Of Radiation, Trauma and Fear

Five years after the nuclear power plant meltdown, a journey through the Fukushima evacuation zone reveals some high levels of radiation and an overriding sense of fear. For many, the psychological damage is far more profound than the health effects.


MORE IN E360 Special Report

The Human Cost Of India’s
Push to Produce More Coal

by fred pearce
As part of India's modernization program, Prime Minister Narenda Modi has called for doubling the nation’s coal production by 2020. For the villages in the Jharia coalfield, which is frequently shrouded in smoke from underground fires, the government’s plans have only increased the pressures and dangers of living alongside huge, burning open-pit mines.

In Rural India, Solar-Powered
Microgrids Show Mixed Success

by fred pearce
As India looks to bring electricity to the quarter of its population still without it, nonprofit groups are increasingly turning to solar microgrids to provide power to the nation’s villages. But the initiatives so far have faced major challenges.

Unnatural Disaster: How Climate
Helped Cause India's Big Flood

by daniel grossman
The flood that swept through the Indian state of Uttarakhand two years ago killed thousands. Now researchers are saying that melting glaciers and shifting storm tracks played a major role in the disaster and should be a warning about how global warming could lead to more catastrophic floods in the future.

Nicaragua Canal: A Giant Project
With Huge Environmental Costs

by chris kraul
Work has already begun on a $50 billion inter-ocean canal in Nicaragua that would cut through nature reserves and bring massive dredging and major ship traffic to Central America’s largest lake. Scientists and conservationists are warning that the project is an environmental disaster in the making.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.


An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.