03 Mar 2011: Interview

Deep-Sea Mining is Coming:
Assessing the Potential Impacts

Numerous companies are moving ahead rapidly with plans to mine copper, gold, and other minerals near hydrothermal vents on the ocean floor. But in an interview with Yale Environment 360, marine biologist Cindy Lee Van Dover warns that without environmental safeguards the unique ecosystems of deep-sea vents could be severely damaged.

by erica westly

Deep-sea mining is attracting growing interest from mining companies and could begin in earnest in just a few years. Two firms — Canada’s Nautilus Minerals and Australia’s Bluewater Metals — have stepped up exploration of underwater mountain ranges in the South Pacific. China and Russia have expressed interest in mining the seabed below the Indian and Atlantic oceans, respectively. And a recent report by Nautilus suggests the deep ocean produces several billion tons of minerals each year, including vast amounts of copper.

As the prospect of undersea mining grows ever more likely, one major question looms: Can these valuable minerals be extracted on a large scale without causing significant environmental damage, particularly to the unique ecosystems near the deep hydrothermal vents where the minerals accumulate?

Cindy Lee Van Dover
Duke University
Cindy Lee Van Dover
One scientist seeking to address this question is Duke University marine biologist Cindy Lee Van Dover, who was one of the first researchers to explore hydrothermal vents, cataloguing numerous species of animals and microbes living in a part of the ocean that biologists once assumed was barren. Today, much of her work is focused on figuring out how drilling into the seabed might disrupt newly discovered life forms, such as the giant tubeworms that thrive near the vents.

In an interview with Yale Environment 360, Van Dover compared the deep sea to America’s Wild West and cautioned that wildlife losses could be similar if mining companies and the International Seabed Authority — the regulatory agency in charge of the ocean’s mineral resources — fail to establish environmentally sound mining practices before deep-sea exploitation begins. To this end, she has gone on research trips with Nautilus Minerals, the Canadian mining company, and is advising the company on conservation issues. But time is short, and Van Dover says she is continually surprised by how swiftly deep-sea mining is developing. “When I heard in 2005 that people were serious about wanting to mine hydrothermal vents, I just laughed,” said Van Dover. “Those of us in the biological community just didn’t think mining was going to happen for decades.”

Yale Environment 360: Let’s start with the basics of what hydrothermal vents are and why they produce these valuable mineral deposits.

Van Dover: Sure. So, hot springs on the seafloor are associated with volcanic venting centers, and they’re analogous to hot springs on land in the sense that water percolates down through the crust and reacts with hot rocks, except that on land it’s rainwater and in the ocean it’s seawater. If you just put rock and seawater together at room temperature, nothing happens, but at very high temperatures, the seawater and rock react chemically. The seawater picks up metals from the rocks, then when the hot vent water mixes with the cold seawater, there’s a pH change and a temperature change, and the combined effect causes the metals to fall back down to the seabed to form mineral deposits.

e360: Researchers have only known about hydrothermal vents since the late 1970s, correct?

Van Dover: Yes, the first vents were recognized in 1976, then verified by a manned submersible vehicle in 1977, which collected samples. The geologists knew that there ought to be some kind of convective flow or hot
There used to be ore bodies on land as rich as what is found on the sea floor, but they are becoming exhausted.”
spring because they were taking temperature measurements in the sediment on these mid-ocean ridges — the mountain ranges that girdle the globe — and they were finding that they were not as hot as they should be, given conductive cooling of the ocean floor. So they thought there ought to be hot springs on the seafloor just like on land. Then they found temperature anomalies in the water, which led them to the hot springs.

e360: When did the interest in deep-sea mining begin?

Van Dover: In the early 1980s. Very early on, geologists recognized that hot springs on the seafloor were the submarine version of what is on land. But on the seafloor you find copper, gold, and silver, which aren’t produced by hot springs on carbonate mounds like in Yellowstone National Park.

e360: Is that why there is so much interest in mining the seafloor?

Van Dover: Yes. My understanding is that ore quality is quite high for certain metals, copper in particular. There used to be ore bodies on land as rich as what is found on the sea floor, but they are becoming exhausted.

e360: So the desire to mine the seafloor was there from the beginning, but no one had the technology to do it.

Van Dover: Originally, when the vents were first discovered, there were only a few submersible, deep-water vehicles. But over the past couple of decades the capabilities of remotely operated vehicles and autonomous vehicles has really expanded. So mapping, sampling, plume prospecting — there are many different technologies that have developed that all help the mining companies explore and understand and map out the mineral deposits. I would say it’s very sophisticated.

The Russians have been interested for a long time, and the Chinese have been getting into it since their economic boom. Japan, China, the U.S., Russia and the EU all have big investments in exploration technology, for a multitude of reasons.

e360: How about the technology for extracting the minerals from the seafloor? Is it the same technology that researchers use to extract samples of the marine life?

Van Dover: The mining companies are using two physical tools and a variety of drilling technologies to explore and discover what the quality of the ore is and determine where it’s going to be the most economical to extract it. But the actual exploitation — I believe they’re working on technology that’s used in coal mining and maybe offshore diamond mining, and then trying to apply that to the deep sea so it’s adapted for the particular situation that they’re working in.

e360: You were one of the first researchers to discover the microbes and animals that live down near these vents.

hydrothermal vent
WHOI
A deep-sea hydrothermal vent located in the East Pacific.
Van Dover: There is no light at the bottom of the ocean, and so no photosynthesis, but there are microbes that feed off the sulfides from the hot springs. Then, there are beautiful animals — giant tubeworms and clams — that feed off the microbes.

e360: How does conservation of these ecosystems factor into the regulations laid out by the International Seabed Authority, the organization the UN created to regulate the seafloor?

Van Dover: The International Seabed Authority does have regulatory authority over the mineral resources on the seabed beneath international waters, and they are responsible for environmental management during the extraction of those resources. Their job is to make sure those resources are exploited in a way that is fair to all countries, all people, that it’s a common heritage of mankind. That’s environment management, but conservation is different from environmental management. Right now nations and mining companies can apply for exploration leases, and down the road they’ll be able to apply for mining leases. And they can choose to mine where they want without thinking about conservation needs.

We need to see if the International Seabed Authority will in fact accept conservation as part of their mandate. We’re all optimistic that they will want to do so. I think there’s no doubt that mining is going to happen. What we want to make sure is that the stakeholders are all talking to one another. The conservation community is a stakeholder, science research is a stakeholder, and mining is a stakeholder. There may be others that come along — tourism, I don’t know what else. The stakeholders need to work together and right now it’s been a mining-dominated philosophy, with environmental management associated with that, but not so much thinking about conservation.

e360: Why wasn’t conservation a priority from the beginning? After all, it was scientists, such as yourself, who first discovered the vents.

Van Dover: When I heard in 2005 that people were serious about wanting to mine hydrothermal vents I just laughed. The International Seabed Authority came to me and asked, “What will we need to care about for hydrothermal vents?” And those of us in the biology community working on hydrothermal vents agreed to do it, but we just didn’t think mining was going to happen for decades. It just didn’t even occur to me that it was feasible.

Right after the vents were discovered, I joined in as a submersible pilot, and it was like the Wild West. We just had a great time. And then I was totally naïve. It never occurred to me that anyone would want to take away the sulfide that my beautiful animals lived on. I had my head in the sand I
It never occurred to me that anyone would want to take away the sulfide that my beautiful animals lived on.”
guess. So, shame on us. In the ‘60s when I was growing up, the deep sea was where we threw trash. Ammunition, munitions waste, chemical waste was all thrown in the deep sea. It was infinitely large — that’s what I grew up on. Of course, I got to realize it wasn’t that infinite and large, but it takes a while to have that really sink into your brain that what we’re doing now is impacting the seabed incredibly. I just thought it would be like the Wild West forever, but I didn’t think about the lessons coming from our own Wild West.

e360: What efforts are there to incorporate conservation into the ISA deep-sea mining guidelines?

Van Dover: A colleague of mine, Craig Smith, has been working with the ISA regarding conservation in areas where there is interest in hydro-manganese mining. It has been welcomed input. They don’t shy away from the issue at all. I think what the conservation community and the scientific community would like to do is have policies in place before the exploitation takes place. I mean, that’s kind of a novel idea, right? Unlike in fisheries, where we’re trying to catch up with all the damage we’ve done.

e360: So conservation practices would be included in the mining permits from the beginning.

Van Dover: That’s right. The explorers in other sites can really help us understand the systems. That would be an ideal situation. But some of this is kind of exciting. I don’t want to see vents mined, but if they’re going to be mined, wouldn’t it be cool to do it in a way that is wise?

e360: What preventative measures could the mining operations take? Would there be spatial restrictions, for example, preserving certain areas?

Van Dover: I think it could be a combination of things. We would like to set aside some spatial reserves. Especially to begin with, we’d rather err conservatively and have more than we need and then be able to open them up as we understand more about what the impacts are. If it’s not so severe, then maybe we could agree on an acceptable amount of diversity loss. It might be that you’d say, ‘Well, mine this half of the site in these five years and lay the other half undisturbed.’ Maybe if it’s a five-year mine, we’ll just
I don’t want to see vents mined, but if they’re going to be mined, wouldn’t it be cool to do it in a way that is wise?”
do two and a half years of the extraction and then stop and wait and see what happens, go somewhere else.

There might also be restoration strategies. If the animals are easily moved, one might move them to another area. That’s one idea. Nautilus Minerals has been very active in thinking about these kinds of out-of-the-box ideas, and they do it by engaging the scientists as well. They come to the scientific community and say, ‘Well, what do you guys think we should do? How do we do this well?’ And I think that’s the attitude that they approach this with, and it’s a very interesting thing to challenge the scientists and say, ‘Well, okay, you want us to take care of your environment, tell us how to do it.’

e360: Do you have a sense of how long you have before they would want to start having exploitation?

Van Dover: That’s a good question. I think it’s probably about three, four, or five years down the road.

e360: So you have about 3 to 5 years to get these conservation policies in place.

Van Dover: Yeah, although they may take much longer. My personal view is that these deep-sea vents are exquisite, extraordinary places, and conveying that is important to me. The animals there have adapted in fabulous ways for the environment. And there are still many, many strange animals out there to discover. We haven’t begun to see all the specialized environments there are in the deep sea.

e360: What are your main concerns regarding the ecosystems around the hydrothermal vents?

MORE FROM YALE e360

Is the End in Sight for
The World’s Coral Reefs?

Is the End in Sight for the World’s Coral Reefs?
It is a difficult idea to fathom, but the science is clear. Unless we change the way we live, the Earth’s coral reefs will be utterly destroyed within our children’s lifetimes, writes Australian scientist J.E.N. Veron.
READ MORE
Van Dover: In some cases these vents have been around for, you know 5,000 years or more, and there’s one example in the mid-Atlantic Ridge of a vent that has built up over 100,000 years. And what we don’t yet understand is, if you were to mine a site like that how quickly will the animals that live there come back? Until we understand the impacts of both a single mining event and a cumulative mining event on one of these older sites, we’re going to wonder how the animals will respond.

We’d also want to know what the genetic diversity is. When you mine you’re going to kill all those animals. You’re going to take away their habitat. But it’s a big area, the size of a couple of football fields. If the mining event is slow, if it takes five years to remove the whole deposit, once you get to the back end, the front end should perhaps already be habitable, so you could have the animals recolonize. But we’re in nursery school when it comes to thinking about this kind of thing.

POSTED ON 03 Mar 2011 IN Biodiversity Biodiversity Oceans Oceans Science & Technology 

COMMENTS


It is my understanding that there are hundreds - perhaps thousands of "dead" vents, where the hydrothermal plumbing systems have shut down. It would seem that these could be mined for decades while the "live" systems are being studied.

Posted by Greg Durocher on 03 Mar 2011


I have not read the article, but it concerns me that experts from overseas think they can dictate terms of resource development from your air conditioned offices in Canada and USA and forget that the developing world needs to develop their resources to provide essential health, educational and ecomic benefits to the people who do not even have road access.

I am not involved with resource development other than tourism which is a renewable resource but having represented people in an under developed district for so long I am aware of their needs to develop and aspire to a lufstye you take for advantage.

Any form of DSTP must be well thought out, but equally important is the need for a protective mechanism that can monitor any adverse effect it may have on the environment and in PNG this has not been obvious in several mining projects that were developed.

Posted by Sir Peter Barter on 09 Mar 2011


I have read with great interest your article on deep sea mining. I will admit that it concerns me a little.

We have seen the impact that mining has made to the surface of our planet, what unknown damage can we do to the oceans.

It seems that they would be concentrating on the hydro thermal outlets on the sea beds, which seem to be the richest areas to mine. These outlets are surely the earths way of releasing excess energy from the earths core.

If we start to mine these areas, could be upset the balance of these outlets and cause build ups in other areas forming underwater volcanoes. (resulting maybe in more earthquakes and
tsunamis).

It seems our greed to access more valuable minerals tends to get us in trouble. How can we weigh up the health of the oceans against the need for gold etc..

What of the impact on marine life? it is so delicately balanced that such mining could adversely affect that balance causing irreparable damage.

I do not know the answer to this problem, but my gut feeling is - leave well enough alone.

Douglas Reshi

Posted by Douglas Reshi on 01 May 2011


Hi,

Is harnessing of hydro vents for electricity harmful to the environment as per Marshall System? Kindly reply.

Regards
Deepak

Posted by Deepak on 29 May 2011


Comments have been closed on this feature.
ABOUT THE AUTHOR
Erica Westly, who conducted this interview for Yale Environment 360, is a freelance science writer based in Brooklyn, New York. Her work has appeared in numerous publications, including Scientific American, Slate, and the New York Times. In a previous article for Yale Environment 360, she wrote about how warming temperatures have imperiled the world’s coffee plants.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


High Stakes on the High Seas:
A Call for International Reserves

Marine protected areas in national waters have proven successful in helping depleted fish stocks to recover. Now, there is growing momentum for the creation of extensive reserves on the high seas as a way of reversing decades of rampant overfishing.
READ MORE

How Climate Change Could Jam
The World's Ocean Circulation

Scientists are closely monitoring a key current in the North Atlantic to see if rising sea temperatures and increased freshwater from melting ice are altering the “ocean conveyor belt” — a vast oceanic stream that plays a major role in the global climate system.
READ MORE

The Dungeness Crab Faces
Uncertain Future on West Coast

The winner of the 2016 Yale Environment 360 Video Contest explores how ocean acidification may be putting at risk a prized crustacean that is vital to the fishing industry and the marine ecosystem on the U.S. Pacific Coast.
READ MORE

How Growing Sea Plants Can
Help Slow Ocean Acidification

Researchers are finding that kelp, eelgrass, and other vegetation can effectively absorb CO2 and reduce acidity in the ocean. Growing these plants in local waters, scientists say, could help mitigate the damaging impacts of acidification on marine life.
READ MORE

A Tiny Pacific Nation Takes the
Lead on Protecting Marine Life

Unhappy with how regional authorities have failed to protect fish stocks in the Western Pacific, Palau has launched its own bold initiatives – creating a vast marine sanctuary and conducting an experiment designed to reduce bycatch in its once-thriving tuna fishery.
READ MORE

 

MORE IN Interviews


What’s Killing Native Birds in
The Mountain Forests of Kauai?

by diane toomey
Biologist Eben Paxton is sounding the alarm about the catastrophic collapse of native bird populations on the Hawaiian island of Kauai. His group's research has uncovered the culprit: disease-carrying mosquitoes that have invaded the birds' mountain habitat.
READ MORE

Exploring How and Why
Trees ‘Talk’ to Each Other

by diane toomey
Ecologist Suzanne Simard has shown how trees use a network of soil fungi to communicate their needs and aid neighboring plants. Now she’s warning that threats like clear-cutting and climate change could disrupt these critical networks.
READ MORE

At Ground Zero for Rising Seas,
TV Weatherman Talks Climate

by diane toomey
John Morales is part of a new breed of television weather forecasters seeking to educate viewers on climate change and the threat it poses. In South Florida, where sea level rise is already causing periodic flooding, he has a receptive audience.
READ MORE

Unable to Endure Rising Seas,
Alaskan Villages Stuck in Limbo

by diane toomey
As an advocate for Alaska’s Native communities, Robin Bronen points to a bureaucratic Catch-22 — villages cannot get government support to relocate in the face of climate-induced threats, but they are no longer receiving funds to repair their crumbling infrastructure.
READ MORE

Why CO2 'Air Capture' Could Be
Key to Slowing Global Warming

by richard schiffman
Physicist Klaus Lackner has long advocated deploying devices that extract carbon dioxide from the atmosphere to combat climate change. Now, as emissions keep soaring, Lackner says in a Yale Environment 360 interview that such “air capture” approaches may be our last best hope.
READ MORE

Bringing Energy Upgrades
To the Nation’s Inner Cities

by diane toomey
Donnel Baird has launched a startup that aims to revolutionize how small businesses and nonprofits secure funding for energy efficiency and clean energy projects in low-income neighborhoods. In a Yale Environment 360 interview, he talks about how he plans to bring his vision to dozens of U.S. cities.
READ MORE

From Mass Coral Bleaching,
A Scientist Looks for Lessons

by katherine bagley
For climate scientist Kim Cobb, this year’s massive bleaching of coral reefs is providing sobering insights into the impacts of global warming. Yale Environment 360 talked with Cobb about the bleaching events and the push to make reefs more resilient to rising temperatures.
READ MORE

For James Hansen, the Science
Demands Activism on Climate

by katherine bagley
Climate scientist James Hansen has crossed the classic divide between research and activism. In an interview with Yale Environment 360, he responds to critics and explains why he believes the reality of climate change requires him to speak out.
READ MORE

How Ocean Noise Pollution
Wreaks Havoc on Marine Life

by richard schiffman
Marine scientist Christopher Clark has spent his career listening in on what he calls “the song of life” in the world’s oceans. In an interview with Yale Environment 360, he explains how these marine habitats are under assault from extreme—but preventable—noise pollution.
READ MORE

How to Talk About Clean
Energy With Conservatives

by diane toomey
Angel Garcia, of Young Conservatives for Energy Reform, is working to persuade Republicans about the need for renewable energy. In an interview with Yale Environment 360, he explains why his group avoids mentioning climate change when it makes its pitch to conservatives
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“Ugandan
Ugandan scientists monitor the impact of climate change on one of Africa’s most diverse forests and its extraordinary wildlife.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.

e360 SPECIAL REPORT

“Tainted
A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

OF INTEREST



Yale