16 Mar 2015: Report

Designing Wetlands to Remove
Drugs and Chemical Pollutants

Drinking water supplies around the world often contain trace amounts of pharmaceuticals and synthetic compounds that may be harmful to human health. One solution being tried in the U.S. and Europe is to construct man-made wetlands that naturally degrade these contaminants.

by carina storrs

Rising high in the San Bernardino Mountains in Southern California, the Santa Ana River flows westward through cities and towns with a total population of nearly 5 million. Along the way, it receives so much sewage that 90 percent of its flow during the dry summer season is effluent, which
Prado wetlands
Carina Storrs
A series of ponds helps remove medical drugs and other water contaminants in the Prado Wetlands in Southern California.
is cleaned again and again at several dozen wastewater treatment plants.

Near the end of its 96-mile course, the Santa Ana comes to a seeming standstill in the Prado Wetlands. Covering 425 acres, the wetlands site — designed by engineers — consists of a series of rectangular ponds, through which the river’s gentle flow is controlled by dam-like weir boxes. It takes about a week for water to traverse the wetlands, during which time cattails and other vegetation help remove nitrogen, phosphorous, and other contaminants.

Today, the Prado Wetlands, which are operated by the Orange County Water District, are part of a new project to remove a different kind of pollution: the residues of medical drugs and synthetic organic compounds, such as herbicides, that are found in small concentrations in rivers but that may
Sunlight and bacteria degrade residues of antibiotics, anti-inflammatories, sex hormones, and other drugs and chemicals.
affect endocrine activity, metabolism, and development in humans. A year-old pilot project at the Prado Wetlands channels river water through three ponds, each about the length of five Olympic swimming pools. Sunlight and bacteria degrade residues of antibiotics, anti-inflammatories, sex hormones, and other drugs and man-made chemicals before the Santa Ana reaches Anaheim, 20 miles downstream. There the river provides the drinking water for 2.5 million people in northern Orange County.

Concern has risen about the potential danger that may come from drinking water tainted by small concentrations of pharmaceuticals that pass through our bodies and are flushed down the toilet, not to mention other synthetic compounds discharged by agriculture and industry. Research has shown that endocrine disruptors and antidepressants may harm reproduction in fish, and endocrine-disrupting compounds also have been linked to adverse health effects in humans. Scientists also fear that the persistence of antibiotics in the environment could promote the development of antibiotic-resistant bacteria.

Currently, there are no U.S. regulations for medical drugs under the Safe Drinking Water Act, and only a few for the residues from consumer products. However, the U.S. Environmental Protection Agency’s Contaminant Candidate List, which establishes what chemicals should be evaluated for possible regulation, in 2009 included several endocrine disruptors called estradiols, found in products such as birth control pills. The list also included erythromycin, an antibiotic. The European Commission placed two types of estradiols and a painkiller called diclofenac on a similar watch list in 2013.

As a result of growing concerns, scientists and government authorities in the U.S., Europe, and elsewhere are experimenting with the use of so-called “constructed wetlands” to remove these pharmaceuticals and chemicals from effluent released by wastewater treatment plants. Constructed wetlands have been used for several decades in the United States and Europe to remove nitrogen and other traditional pollutants from wastewater. In the U.S., roughly 250 constructed wetlands have been built to treat effluent from wastewater treatment plants, and in Europe thousands of constructed wetlands exist, mainly for treating wastewater from smaller communities.

”There are a lot of potential applications of this technology to give communities a more cost-effective treatment than traditional approaches,”
Tests reveal many of the compounds survive passage through wastewater treatment plants.
says Larry Barber, a researcher at the U.S. Geological Survey (USGS).

About 10 years ago, thanks to the development of sensitive detection methods, it became possible to measure trace levels of these compounds in surface water bodies such as rivers. Tests reveal that many of the compounds survive passage through wastewater treatment plants. The EPA is currently investigating how well facilities that treat drinking water remove pharmaceutical products, and whether retrofitting these plants with steps such as reverse osmosis could improve removal. But there are financial and practical drawbacks. Reverse osmosis systems are expensive, and constructed wetlands need tens to hundreds of acres to process large volumes of wastewater.

One of the early indications that constructed wetlands could help treat pharmaceuticals and other synthetic contaminants came from a study of nonylphenol, which is widely present in laundry detergents. Nonylphenol is an endocrine disruptor and has been shown to have potent toxicity in fish. When a research team led by the USGS was testing the ability of a small-scale wetlands system outside of Phoenix, Arizona, to diminish nitrogen levels in the wastewater treatment effluent, they noticed that
Tres Rios wetlands
Tres Rios Wetlands
Besides helping to remove chemicals, the Tres Rios Wetlands in Arizona provide wildlife habitat.
nonylphenol and its breakdown products were also reduced, some by 90 percent.

Since those tests, the team has built a full-scale, 380-acre constructed wetlands at the site, called the Tres Rios Wetlands. It is one of the largest in the U.S. and provides water for irrigation and wildlife habitat. It also has three main ponds that remove chlorine, heavy metals, herbicides, nitrogen, and nonylphenol.

Numerous studies have shown the effectiveness of constructed wetlands in removing such contaminants. A 2004 study of the Prado Wetlands found that the site helped reduce levels of ibuprofen and organic chemicals found in pesticides and flame retardants. Scientists in Spain have reported that natural systems efficiently removed a number of anti-inflammatory drugs and pesticides.

Still, many compounds, including some estradiols and antibacterials, are more resistant to treatment in constructed wetlands, with their levels dropping by only about half. "In my mind you definitely want more than 50 percent removal, or why bother?" says David Sedlak, a professor of environmental science and engineering at the University of California, Berkeley.

Sedlak and his collaborators are behind the pilot project at the Prado Wetlands. Inspired by experiments showing that drugs are degraded by sunlight as they move down a river, they worked on developing a new type of constructed wetland design specifically to remove these compounds.

In typical constructed wetland designs, weedy aquatic plants are the focal point, because of the myriad ways they break down contaminants. But they also overshadow, literally, the contribution of sunlight. So about a year ago,
At the Texas project, water will first travel through weedy ponds to remove nitrogen.
Sedlak’s team started testing what they call open-water units at the Prado Wetlands. Now, before wastewater enters the series of cattail-filled ponds, it drifts through one of three large ponds over the course of a day or two. To prevent plant growth, engineers used a simple approach: They put down a tarp along the bottom of the ponds.

Although the researchers are still in the first phase of data collection, the new ponds at the Prado Wetlands seem to work as well as a similar pilot-scale system in Discovery Bay near San Francisco that has been operating for about seven years. Early data suggest that open-water units at Discovery Bay remove 90 percent of sulfamethoxazole, an antibiotic often resistant to removal in waste treatment plants. An unexpected benefit is that a layer of algae and bacteria that grows on the tarp-covered pond bottoms appears to bind and degrade compounds.

Ponds similar to open-water units will also be incorporated into the Brazos River Demonstration Wetland, a 12-acre site that engineers started building in January in Waco, Texas. Construction should finish later this year. The project marks the first constructed wetlands designed to optimize the breakdown of drugs while also removing traditional contaminants found in wastewater treatment plant discharge. Brazos will not rely solely on photodegradation to remove compounds. Water will travel through weedy ponds to remove nitrogen and then through subsurface wetlands with very low oxygen levels to help strip out chemicals.

Barber, the USGS geologist who worked on the Tres Rios wetlands in Arizona and also helped design the Brazos site, hopes that what

ALSO FROM YALE e360

New Desalination Technologies
Spur Growth in Recycling Water

Desalination technology
Desalination has long been associated with one process — turning seawater into drinking water. But a host of new technologies are being developed that not only are improving traditional desalination but opening up new frontiers in reusing everything from agricultural water to industrial effluent.
READ MORE
they learn will improve design of small constructed wetlands nationwide, as well as larger wetlands that treat wastewater treatment effluent.

Recent research in Europe supports the idea that hybrid constructed wetlands — a combination of surface-level and subsurface ponds that do not freeze in colder climates — most effectively remove endocrine disruptors and other compounds. Environmental agencies in countries such as Denmark, Austria, and Germany currently provide guidelines and set standards for removal of nitrogen, phosphorus, and other contaminants in constructed wetlands. Researchers do not expect official guidelines on levels of drugs and other micro-contaminants until those substances are regulated.

Even without regulations, some communities are willing to invest in constructed wetlands, as evidenced by the Brazos site. “It’s about being proactive in terms of the right way to do water reuse,” says Barber.



POSTED ON 16 Mar 2015 IN Oceans Pollution & Health Science & Technology Water Asia Europe North America 

COMMENTS


Compelling research. Our Northern California environmental partners with organic rice lands (also constructed wetlands with weir boxes) perform these happy duties of cleaning river water from the Sacramento River. Rice is a river of grass, and like all wetlands and the everglades, it too scavenges nitrate returning clean water to the river. Constructed organic rice wetlands intercept contaminated river water before it reaches towns & cities downstream. The cleaned water travels further down to the Sacramento-San Joaquin Delta, the San Francisco Bay and ultimately the Pacific Ocean. This helps support such fragile endangered species as the Delta Smelt. The smelt are sensitive to nitrates and ammonias produced by water treatment plants. the constructed wetlands help dilute the potent elements disrupting the fish ecosystem and lifecycle.

Our environmental partners at the Klamath Wildlife Refuge similarly clean water through their Walking Wetlands programs. Walking wetlands marry agriculture with water quality. For further information about on constructed wetlands in organic farming in Northern California and beyond check-out this PBS segment on youTube.

https://www.youtube.com/watch?v=pT6r2bqdWqM

Posted by Pacific Flyway Field Station on 19 Mar 2015


The way I see it, these man-made wetlands are nothing more than a more 'picturesque' water treatment plant. Still, I suppose they are an improvement over unsightly holding tanks spread out over multiple acres.
Posted by Enviro Equipment Inc. on 02 Apr 2015


This is a great idea and definitely seems like it could work!
Posted by Ifrah Khan@GreenGlobalTravel on 16 Jun 2015


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


carina storrsABOUT THE AUTHOR
Carina Storrs is a freelance journalist based in New York. She writes about ecology, biology, and medicine. Her work has appeared in The New York Times, Scientific American, Discover, and The Scientist.

 
 

RELATED ARTICLES


In New Ozone Alert, A Warning
Of Harm to Plants and to People

Scientists are still trying to unravel the damaging effects of ground-level ozone on life on earth. But as the world warms, their concerns about the impact of this highly toxic, pollution-caused gas are growing.
READ MORE

Rocky Flats: A Wildlife Refuge
Confronts Its Radioactive Past

The Rocky Flats Plant outside Denver was a key U.S. nuclear facility during the Cold War. Now, following a $7 billion cleanup, the government is preparing to open a wildlife refuge on the site to the public, amid warnings from some scientists that residual plutonium may still pose serious health risks.
READ MORE

Pressure Mounts to Reform Our
Throwaway Clothing Culture

Americans dispose of about 12.8 million tons of textiles annually — 80 pounds for each man, woman, and child. In the U.S. and around the world, a growing number of environmentalists and clothing industry executives say it’s time to end the wasteful clothing culture and begin making new apparel out of old items on a large scale.
READ MORE

Sticker Shock: The Soaring Costs
Of Germany’s Nuclear Shutdown

German Chancellor Angela Merkel’s 2011 decision to rapidly phase out the country’s 17 nuclear power reactors has left the government and utilities with a massive challenge: How to clean up and store large amounts of nuclear waste and other radioactive material.
READ MORE

Can Uber-Style Buses Help
Relieve India's Air Pollution?

India’s megacities have some the deadliest air and worst traffic congestion in the world. But Indian startups are now launching initiatives that link smart-phone apps and private shuttle buses and could help keep cars and other motorized vehicles off the roads.
READ MORE

 

MORE IN Reports


How Warming Threatens the Genetic
Diversity of Species, and Why It Matters

by jim robbins
Research on stoneflies in Glacier National Park indicates that global warming is reducing the genetic diversity of some species, compromising their ability to evolve as conditions change. These findings have major implications for how biodiversity will be affected by climate change.
READ MORE

Full Speed Ahead: Shipping
Plans Grow as Arctic Ice Fades

by ed struzik
Russia, China, and other nations are stepping up preparations for the day when large numbers of cargo ships will be traversing a once-icebound Arctic Ocean. But with vessels already plying these waters, experts say the time is now to prepare for the inevitable environmental fallout.
READ MORE

How Forensics Are Boosting
Battle Against Wildlife Trade

by heather millar
From rapid genetic analysis to spectrography, high-tech tools are being used to track down and prosecute perpetrators of the illegal wildlife trade. The new advances in forensics offer promise in stopping the trafficking in endangered species.
READ MORE

African Wetlands Project: A Win
For the Climate and the People?

by winifred bird
In Senegal and other developing countries, multinational companies are investing in programs to restore mangrove forests and other wetlands that sequester carbon. But critics say these initiatives should not focus on global climate goals at the expense of the local people’s livelihoods.
READ MORE

Ghost Forests: How Rising Seas
Are Killing Southern Woodlands

by roger real drouin
A steady increase in sea levels is pushing saltwater into U.S. wetlands, killing trees from Florida as far north as New Jersey. But with sea level projected to rise by as much as six feet this century, the destruction of coastal forests is expected to become a worsening problem worldwide.
READ MORE

On College Campuses, Signs of
Progress on Renewable Energy

by ben goldfarb
U.S. colleges and universities are increasingly deploying solar arrays and other forms of renewable energy. Yet most institutions have a long way to go if they are to meet their goal of being carbon neutral in the coming decades.
READ MORE

For European Wind Industry,
Offshore Projects Are Booming

by christian schwägerl
As Europe’s wind energy production rises dramatically, offshore turbines are proliferating from the Irish Sea to the Baltic Sea. It’s all part of the European Union’s strong push away from fossil fuels and toward renewables.
READ MORE

In New Ozone Alert, A Warning
Of Harm to Plants and to People

by jim robbins
Scientists are still trying to unravel the damaging effects of ground-level ozone on life on earth. But as the world warms, their concerns about the impact of this highly toxic, pollution-caused gas are growing.
READ MORE

The Rising Environmental Toll
Of China’s Offshore Island Grab

by mike ives
To stake its claim in the strategic South China Sea, China is building airstrips, ports, and other facilities on disputed islands and reefs. Scientists say the activities are destroying key coral reef ecosystems and will heighten the risks of a fisheries collapse in the region.
READ MORE

Natural Aquaculture: Can We
Save Oceans by Farming Them?

by richard schiffman
A small but growing number of entrepreneurs are creating sea-farming operations that cultivate shellfish together with kelp and seaweed, a combination they contend can restore ecosystems and mitigate the impacts of ocean acidification.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“Ashaninka
An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

OF INTEREST



Yale