20 Oct 2014: Report

Drive to Mine the Deep Sea
Raises Concerns Over Impacts

Armed with new high-tech equipment, mining companies are targeting vast areas of the deep ocean for mineral extraction. But with few regulations in place, critics fear such development could threaten seabed ecosystems that scientists say are only now being fully understood.

by mike ives

For years, the idea of prospecting for potentially rich deposits of minerals on the ocean floor was little more than a pipe dream. Extractive equipment

View Gallery
hydrothermal vents

Nautilus Minerals
Hydrothermal vents create rich mineral deposits that companies are eager to exploit.
was not sophisticated or cost-effective enough for harsh environments thousands of feet beneath the ocean’s surface, and mining companies were busy exploring mineral deposits on land. But the emergence of advanced technologies specifically designed to plumb the remote seabed— along with declining mineral quality at many existing terrestrial mines — is nudging the industry closer to a new and, for some environmentalists and ocean scientists, worrying frontier.

More than two-dozen permits have been issued for mineral prospecting in international waters. And in April, after years of false starts, a Canadian mining company signed an agreement with the government of Papua New Guinea to mine for copper and gold in its territorial waters. That company, Nautilus Minerals, plans to begin testing its equipment next year in European waters, according to the International Seabed Authority (ISA), a regulatory agency established in 1994 under the auspices of the United Nations. A Nautilus spokesman, John Elias, said the plan is to award a construction contract in November for a specialized mining vessel. “All other equipment has been manufactured and is in final assembly,” he wrote in an email.

Chief among critics’ concerns is that seabed mining will begin without comprehensive regulatory oversight and environmental review. They say
Dredging or drilling the seafloor could potentially obliterate deep-sea ecosystems.
dredging or drilling the seafloor could potentially obliterate deep-sea ecosystems and kick up immense sediment plumes, which could temporarily choke off the oxygen supply over large areas. And powerful international companies, they add, could take advantage of the lax or non-existent review and enforcement capabilities in many small island nations of the Pacific Ocean — precisely where seabed mineral deposits are thought to be highly concentrated.

“Communities are concerned that our governments don’t know enough about the ecology or the implications” of seabed mining, said Maureen Penjueli, coordinator of the Pacific Network on Globalization, a Fiji-based non-profit that has tracked seabed prospecting in the region since 2009. “We haven’t seen much benefit from land-based mining, let alone fisheries or tourism — and here we are entering a new frontier.”

But industry proponents say no extractive industry is free of environmental impacts, and that only a fraction of the seabed covered by exploration permits would actually be mined. Companies and governments, they say, are carefully studying both deep-sea ecosystems and emerging mining technologies in order to prevent or mitigate ecological damage.

“We are committed to using ecologically sound, deep-seabed mineral recovery methods,” said Jennifer Warren, the regulatory director at UK Seabed Resources, a subsidiary of the U.S. defense giant Lockheed Martin's British arm. “Toward that end, we are working closely with research institutions and scientists to understand any potential environmental

View Gallery
deep sea mining diagram

Nautilus Minerals
Diagram of a deep sea mine site.
impact of commercial recovery efforts.”

Gaining that kind of understanding is a work in progress. As late as the 1950s, the deep sea was still viewed as a dark and barren place with little or no biodiversity worthy of protection. But in the 1960s, new sampling technologies prompted the discovery of new deep-sea species, and by the late 1970s, scientists had discovered bacteria that could thrive amid hydrothermal vents in deep, volcanically active regions. Those bacteria are turning out to be food for a number of “beautiful and strange” invertebrates, according to Cindy Van Dover, a marine biologist at Duke University. By the early 1990’s, scientists were speculating that the deep sea played host to as many as 10 million species of small invertebrates.

It is amid this awakening to deep-sea biodiversity that interest in seabed mineral mining is heating up. While investing in seabed-mining operations remains comparatively expensive, “the equation is turning,” according to Michael W. Lodge, legal counsel with the ISA. “People are starting to think that upfront investment is worth it for the long term payoff.” The ISA has issued seven new seabed exploration permits this year, Lodge noted, bringing its global total to 26, stretching across an area of international waters roughly the size of Mexico.

Nautilus Minerals’ planned operation in the territorial waters off Papua New Guinea, however, is widely expected to be the world’s first commercial-scale deep-seabed mine. Several neighboring countries have begun to issue export permits — and in some cases, are drafting seabed-specific mining legislation. New Zealand has also been weighing applications for two seabed mines in its waters, which would target iron sands and
Metals like gold and copper can accumulate around hydrothermal vents in the seafloor.
phosphate, respectively.

In an email message, James Hein, a geologist with the U.S. Geological Survey and the president of the International Marine Minerals Society, a non-profit organization linking industry, government, and academic institutions, suggested that the global rush to mine so-called “rare earth” elements – which are used to manufacture cellular phones, wind turbines, solar panels, electric cars and other applications – is a key driver in moving the industry forward.

Other sought-after resources include sulfide minerals — a source of precious metals like silver, gold and copper — that accumulate around gaps in the seafloor where chemical-rich fluids leak into the ocean at temperatures nearing 1,000 degrees Fahrenheit. The Nautilus Minerals project in Papua New Guinea plans to mine a sulfide deposit by cutting the seabed with a remote-control machine that is 26 feet tall, 42 feet wide, and 55 feet long. According to the company, the ore will be extracted with an “associated suction mouth” and pumped to the surface — a distance of about a mile.

Manganese nodules — palm-sized chunks of rock containing copper, nickel and cobalt — are also prized, and in shallower areas, mining companies plumb for rocks containing phosphates, a key ingredient in agricultural fertilizers. “The process itself is essentially a large vacuum cleaner on the end of a hose,” said Chris Castle of Chatham Rock Phosphate, the company behind the phosphate-mining application pending in New Zealand.

Here and elsewhere, however, environmental battle lines are now being drawn. In June, a New Zealand court, citing environmental concerns, riled the mining industry by rejecting a proposed plan for an iron sands mine about 15 miles off the coast of the country’s North Island. The company behind the proposed mine, Trans-Tasman Resources, says it has spent over seven years and more than $50 million studying the potential impacts. An

View Gallery
sulfide-rich rock

Nautilus Minerals
Sulfide-rich rocks are sources of copper, nickel, and other marketable metals.
appeals hearing is scheduled for next March.

Meanwhile, the New Zealand advocacy group Kiwis Against Seabed Mining has argued that the mines would pose risks to iconic mammals — including blue whales and Maui’s dolphins — that outweigh any potential economic benefits.

Castle, Chatham Rock Phosphate's project director, said the environmental impacts on the seabed would be far less than those that fishing trawlers regularly inflict. But Les Watling, a biology professor at the University of Hawaii at Manoa, argued that sediment plumes from the phosphate mine could stress or kill an entire species of local coral, Goniocorella dumosa, leading to wider impacts because the coral’s branches are a habitat for smaller organisms. And Liz Slooten, a zoologist at New Zealand’s Otago University, said the sounds from seabed mining in that area could damage or destroy the hearing of blue whales, causing them to flee and perhaps even beach themselves.

Ultimately, the exact impacts of deep-sea mining in New Zealand or beyond won’t be entirely clear until the mines actually open, said Phil Weaver, a geologist and the coordinator of a three-year project called Managing Impacts of Deep Sea Resource Exploitation, which launched in 2013 with a $11.4 million grant from the European Commission. “We need
Individual countries are free to choose their own regulatory approaches to seabed mining.
to put in place some criteria and protocols which will at least try to control those impacts based on available information.”

In March, the ISA began soliciting public comments for its first-ever Mineral Exploitation Code. A voluntary environmental code drafted by the International Marine Minerals Society in 2001 will inform the new ISA document, according to Hein, the society’s president. David Billett of Britain’s National Oceanography Centre, who sits on the ISA’s legal and technical commission, said environmental matters are “regularly raised” at the committee’s meetings, and that the ISA has strict guidelines for the sort of ecological data that prospective miners must collect along seabeds.

Still, individual countries are free to choose their own regulatory approaches to seabed mining, and permits in the South Pacific have already been issued in waters that cover an area the size of Iran, according to the Deep Sea Mining Campaign, an international coalition of non-profit groups. A 2010 study in the journal Marine Policy said the “absence of a clearly defined regulatory regime” in international waters was encouraging seabed prospectors to pursue projects in territorial waters, where legal risks were smaller. It named Tonga and its neighbor Papua New Guinea as two countries that would struggle to balance economic development against the


A Scarcity of Rare Metals Is
Hindering Green Technologies

Rare metals
A shortage of "rare earth" metals, used in everything from electric car batteries to solar panels to wind turbines, is hampering the growth of renewable energy technologies. Researchers are now working to find alternatives to these critical elements or better ways to recycle them.
need to protect marine ecosystems.

Environmental groups are watching carefully as the Nautilus Minerals project gathers speed in Papua New Guinea. The company says its mine will not contaminate coral or fisheries, and Jonathan Copley, a prominent marine ecologist at Britain's University of Southampton, has said that the project’s design appears to be environmentally sensitive. Yet Nautilus and other international firms have other mining applications scattered across the South Pacific, and Van Dover of Duke University said scientists’ biggest concern is the cumulative impacts of multiple mines opening in the same area.

“A single mining event — at the scale of a single hydrothermal vent field — would be no worse than the most extreme natural disturbance,” Van Dover said in an email message. “But multiple mining events in a region in a short period of time — i.e. within a decade — would be unwise without good environmental knowledge of the ability of the system to recover.”

POSTED ON 20 Oct 2014 IN Biodiversity Business & Innovation Business & Innovation Energy Pollution & Health Science & Technology Science & Technology North America 


Is there nothing that is off limits when it comes to exploitation by companies? Just say no. I can envision all kinds of problems. We do not need to pollute our oceans and seas further.
Posted by Sue Dodson on 22 Oct 2014

Ah, yes...the continuing advance of industrial activity to maintain economic growth. Are we doomed to repeatedly perpetrate these assaults on earth? Yes, I guess we are, but now I hope that we can do it with as little ecological damage as possible. With a probable occurrence of catastrophic climate change, we must tread softly. Perhaps, we should re-visit the notion of incessant growth of industry and population, and try to repair the damage we have already done, or is this quixotic? Nevertheless, we surely need an ecological economics, if we have any hope of surviving.
Posted by Donald Campbell on 23 Oct 2014

See reports from SOPAC/SPC on seabed mining in the Pacific at http://www.grida.no/publications/deep-sea-minerals/

Posted by elaine baker on 23 Oct 2014

One hopes in vain that the rape of the planet for profit would cease. But, it will not stop until we have totally insured the end of survival for all living things. Greed rules. Nothing can stop the madness.
Posted by Larry Eastman on 12 Nov 2014

Wow! Thanks to Elaine Baker for posting that link to the materials found at http://www.grida.no/publications/deep-sea-minerals/

I am a fiction writer working on a novel taking place in a seafloor mining operation. That is the absolute best resource I have found thus far for my limited purposes as a fiction writer. AWESOME!!! THANKS!!!
Posted by Chip Trimmier on 20 Apr 2015


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

Mike Ives is a journalist based in Hanoi, Vietnam. He writes for, among others, The New York Times, The Economist, and The Associated Press. Previously for Yale e360, he reported on a campaign to curb Vietnam's rhino horn trade and challenges for India's bus rapid transit system.



The Rising Environmental Toll
Of China’s Offshore Island Grab

To stake its claim in the strategic South China Sea, China is building airstrips, ports, and other facilities on disputed islands and reefs. Scientists say the activities are destroying key coral reef ecosystems and will heighten the risks of a fisheries collapse in the region.

Natural Aquaculture: Can We
Save Oceans by Farming Them?

A small but growing number of entrepreneurs are creating sea-farming operations that cultivate shellfish together with kelp and seaweed, a combination they contend can restore ecosystems and mitigate the impacts of ocean acidification.

High Stakes on the High Seas:
A Call for International Reserves

Marine protected areas in national waters have proven successful in helping depleted fish stocks to recover. Now, there is growing momentum for the creation of extensive reserves on the high seas as a way of reversing decades of rampant overfishing.

How Climate Change Could Jam
The World's Ocean Circulation

Scientists are closely monitoring a key current in the North Atlantic to see if rising sea temperatures and increased freshwater from melting ice are altering the “ocean conveyor belt” — a vast oceanic stream that plays a major role in the global climate system.

The Dungeness Crab Faces
Uncertain Future on West Coast

The winner of the 2016 Yale Environment 360 Video Contest explores how ocean acidification may be putting at risk a prized crustacean that is vital to the fishing industry and the marine ecosystem on the U.S. Pacific Coast.


MORE IN Reports

For European Wind Industry,
Offshore Projects Are Booming

by christian schwägerl
As Europe’s wind energy production rises dramatically, offshore turbines are proliferating from the Irish Sea to the Baltic Sea. It’s all part of the European Union’s strong push away from fossil fuels and toward renewables.

In New Ozone Alert, A Warning
Of Harm to Plants and to People

by jim robbins
Scientists are still trying to unravel the damaging effects of ground-level ozone on life on earth. But as the world warms, their concerns about the impact of this highly toxic, pollution-caused gas are growing.

The Rising Environmental Toll
Of China’s Offshore Island Grab

by mike ives
To stake its claim in the strategic South China Sea, China is building airstrips, ports, and other facilities on disputed islands and reefs. Scientists say the activities are destroying key coral reef ecosystems and will heighten the risks of a fisheries collapse in the region.

Natural Aquaculture: Can We
Save Oceans by Farming Them?

by richard schiffman
A small but growing number of entrepreneurs are creating sea-farming operations that cultivate shellfish together with kelp and seaweed, a combination they contend can restore ecosystems and mitigate the impacts of ocean acidification.

High Stakes on the High Seas:
A Call for International Reserves

by nicola jones
Marine protected areas in national waters have proven successful in helping depleted fish stocks to recover. Now, there is growing momentum for the creation of extensive reserves on the high seas as a way of reversing decades of rampant overfishing.

For China’s Polluted Megacities,
A Focus on Slashing Emissions

by mike ives
The booming industrial center of Shenzhen is a showcase for Chinese efforts to cut CO2 emissions and make the nation's burgeoning cities more livable. But it remains to be seen whether China's runaway industrial development can give way to a low-carbon future.

Rocky Flats: A Wildlife Refuge
Confronts Its Radioactive Past

by fred pearce
The Rocky Flats Plant outside Denver was a key U.S. nuclear facility during the Cold War. Now, following a $7 billion cleanup, the government is preparing to open a wildlife refuge on the site to the public, amid warnings from some scientists that residual plutonium may still pose serious health risks.

Pressure Mounts to Reform Our
Throwaway Clothing Culture

by marc gunther
Americans dispose of about 12.8 million tons of textiles annually — 80 pounds for each man, woman, and child. In the U.S. and around the world, a growing number of environmentalists and clothing industry executives say it’s time to end the wasteful clothing culture and begin making new apparel out of old items on a large scale.

The New Green Grid: Utilities
Deploy ‘Virtual Power Plants’

by maria gallucci
By linking together networks of energy-efficient buildings, solar installations, and batteries, a growing number of companies in the U.S. and Europe are helping utilities reduce energy demand at peak hours and supply targeted areas with renewably generated electricity.

Sticker Shock: The Soaring Costs
Of Germany’s Nuclear Shutdown

by joel stonington
German Chancellor Angela Merkel’s 2011 decision to rapidly phase out the country’s 17 nuclear power reactors has left the government and utilities with a massive challenge: How to clean up and store large amounts of nuclear waste and other radioactive material.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.


An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.