06 Feb 2012: Report

In Fast-Track Technology, Hope
For a Second Green Revolution

With advances in a technique known as fast-track breeding, researchers are developing crops that can produce more and healthier food and can adapt and thrive as the climate shifts.

by richard conniff

In Zambia during the current planting season, a corn crop will go into the fields that begins the process of rapidly boosting vitamin A content by as much ten-fold — helping to address a nutritional deficiency that causes 250,000-500,000 children to go blind annually, most of them in Africa and Asia. In China, Kenya, and Madagascar, also this planting season, farmers will put out a crop of Artemisia annua that yields 20 to 30 percent more of the chemical compound artemisinin, the basis for what is now the world’s standard treatment for malaria.

Both improvements are happening because of fast-track breeding technology that promises to produce a 21st-century green revolution. It is already putting more food on tables — though it’s unclear whether it can add enough food to keep pace as the world’s human population booms to 9 billion people by 2050.

Fast-track breeding is also giving agronomists a remarkable tool for quickly adapting crops to climate change and the increasing challenges of drought, flooding, emerging diseases, and shifting agricultural zones. And it can help save lives: In the absence of prevention, half those victims of vitamin A deficiency now die shortly after going blind, according to the World Health
Fast-track breeding is a faster and more efficient way of doing what nature and farmers have always done.
Organization; and in 2010, lack of adequate treatment — meaning artemisinin — contributed to the deaths of 655,000 children from malaria.

The fast-track technology, called marker-assisted selection (MAS), or molecular breeding, takes advantage of rapid improvements in genetic sequencing, but avoids all the regulatory and political baggage of genetic engineering. Bill Freese, a science policy analyst with the Center for Food Safety, a nonprofit advocacy group, calls it “a perfectly acceptable tool. I don’t see any food safety issue. It can be a very useful technique if it’s used by breeders who are working in the public interest.”

Molecular breeding isn’t genetic engineering, a technology that has long alarmed critics on two counts. Its methods seem outlandish — taking genes from spiders and putting them in goats, or borrowing insect resistance from soil bacteria and transferring it into corn — and it has also seemed to benefit a handful of agribusiness giants armed with patents, at the expense of public interest.

By contrast, molecular breeding is merely a much faster and more efficient way of doing what nature and farmers have always done, by natural selection and artificial selection respectively: It takes existing genes that happen to be advantageous in a given situation and increases their frequency in a population.

In the past, farmers and breeders did it by walking around their fields and looking at individual plants or animals that seemed to have desirable traits, like greater productivity, or resistance to a particular disease. Then they went to work cross-breeding to see if they could tease out that trait and get it to appear reliably in subsequent generations. It could take decades, and success at breeding in one trait often meant bringing along some deleterious fellow traveler, or inadvertently breeding out some other essential trait.

Cornell Molecular Breeding
Cornell University Photography Photo/Lindsay France.
A Cornell researcher bags rice plant panicles to prevent cross pollination.
Molecular breeding enables growers to get the improvements they want far more precisely, by zeroing in on the genes responsible for a given trait. If genetic engineering is a tool for “bludgeoning the genome,” as Cornell University researcher Susan McCouch puts it, what molecular breeding does instead is to “open a window” into how the genome works, enabling researchers to collaborate with it.

Sequencing the entire genome of a species is the first step, and this process, which cost millions of dollars a decade ago, is down now to the low thousands. Next, researchers sort out which genes are responsible for a given function, the bottleneck in the process so far, though McCouch says it becomes faster and cheaper with each new species that gets sequenced, because nature tends to employ the same mechanisms from one species to another. Finally, researchers map out markers — bits of genetic material that are linked to those genes, to flag whether or not the desired genes are present in a given individual.

“It’s not uncommon for a company to want to combine 10 or 20 traits in a variety,” says Harry Klee, a specialist in tomato breeding at the University of Florida in Gainesville. In the past, to get the perfect combination of traits using conventional methods, “you would have to put out millions of plants in the field.” Instead, breeders typically simplified, narrowing down their wish list to a few key traits.

With tomatoes, for instance, as many as 30 or 40 different genes influence taste — too many variables to juggle. So shelf life and appearance inevitably trumped taste. “But this is where molecular breeding really pays off,” says Klee. Breeders now use genetic markers to automatically screen one-inch-tall seedlings and immediately weed out the 99 percent they don’t want, cutting years off the breeding timetable. That makes it easier to get to desirable cross-breed quickly — and also stack up a complex array of traits in a single strain. As a result, says Klee, even mass-produced supermarket tomatoes should actually taste good five years from now.

In the two decades since researchers first proposed molecular breeding in 1989, high costs and the difficult work of discovery have largely confined the technology to big companies working in commodity crops like corn and
These methods have the potential to make breeding aim at enhancing biological and agricultural diversity.
soybeans. But as costs fall even faster than Moore’s Law would predict and genetic methods become routine, researchers are now also applying them to the so-called orphan crops on which much of the developing world depends. Molecular breeding is not as effective so far for crops that propagate clonally, including such tropical staples as cassava, sweet potato, yams, bananas and plantains. But for rice and many other crops, it enables breeders to quickly tailor a plant to a particular environment or taste.

“Every village has its own favorite rice,” says Ian Graham, director of the University of York’s Centre for Novel Agricultural Products. “The challenge is if you come up with a great trait, how on earth do you put that trait into all these local varieties easily, economically, and quickly? Sequencing gives you the tool to do it. That’s the secret of really making molecular breeding work for the developing world.” There are still economic barriers, he says, but equipment to set up a basic laboratory in a developing country “is on the order of $100,000 instead of millions.” Thus genetic methods have the potential to make breeding more local, more democratic, and aimed at enhancing biological and agricultural diversity, instead of stripping it away.

The Green Revolution of the 1960s largely achieved its huge leap in productivity by streamlining plants and farming methods to work across hundreds of millions of hectares, regardless of local tastes or environments. It re-designed plants for high-input industrial agriculture, so they could respond to an intensive regimen of fertilizers, water, and pesticides, regardless of the environment. But the molecular Green Revolution will work, says McCouch, by fine-tuning crops to perform in a particular environment, minus additional input. Farmers are backing off growing rice in water, for instance, “because they can’t afford the water, there isn’t enough water in the world.”

Molecular breeding will also build crops, McCouch says, to “respond constructively to changes in the environment that we cannot predict,” like flooding and drought. “A really big challenge in discovery genetics right now,” she says, “is to understand how plants sense environments: How do they count number of days? How do they count the number hours of daylight? How do they know when to grow and when to hold their breath if they’re underwater? Once we make the discovery of which genes allow the

MORE FROM YALE e360

Can ‘Climate-Smart’ Agriculture
Help Africa and the Planet?

Climate Smart Agriculture Africa
An idea promoted at the recent Durban talks is “climate-smart agriculture,” which could make crops less vulnerable to heat and drought and turn depleted soils into carbon sinks. The World Bank and African leaders back this approach, Fred Pearce writes, but some critics are skeptical that it will benefit small-scale African farmers.
READ MORE
plants to sense these things, then we can do marker-assisted selection” and move those genes into local varieties that already have the other traits farmers want.

The potential for molecular breeding to help farmers adapt to a rapidly changing world became evident last month when Nature Biotechnology published an article about rice breeding in Japan. Geneticists at the Iwate Biotechnology Research Center 130 miles north of Fukushima were already using molecular breeding to improve the cold-tolerant rice variety preferred by farmers there, when last year’s earthquake hit. The subsequent tsunami left a huge swath of rice paddies — 58,000 acres, representing almost a fifth of the nation’s rice supply — contaminated with too much salt for conventional farming. The researchers promptly switched their focus to salt-tolerant genes. Instead of taking five years to produce a suitable crossbreed by conventional methods, they now hope to deliver those seeds to affected farmers in just two years, for the 2014 growing season.

POSTED ON 06 Feb 2012 IN Business & Innovation Climate Policy & Politics Policy & Politics Africa Asia Europe North America 

COMMENTS


Japanese efforts in developing salt tolerance varieties for 2014, and molecular level breeding definitely will be turning point in green revolution. However, biodiversity and argroecological concerns are other challenges.

Posted by SANJEEV ADHIKARI on 06 Feb 2012


Molecular-breeding sure seems like the right thing to do, to help all concerned. Are the seeds available for USA-use, NOW, in our drier areas, like my state of Arizona? If so, how do I obtain some? My collegues talk of an EMP-attack from Iran/other, and if war occurs with Iran/Syria, Russia & Red China may decide we should be struck--at best only the "Command & Control & Military, and at worse, a general strike that kills 40 million from blast, outright, china then occupying. Are important projects like those mentioned, dispersed, in case of either scenario? I wonder if Yale could develop Purselane, which is an excellent, high-nutrient plant that can grow as well as a weed, in the Southwest?

Posted by Jack Dale on 07 Feb 2012


With climatic changes and increasing population the need of the hour is improved varieties of crops and high yielding ones.

Dr.A.Jagadeesh Nellore (AP),India
E-mail: anumakonda.jagadeesh@gmail.com

Posted by Dr.A.Jagadeesh on 07 Feb 2012


So, the question is whether this technology will improve food security or just allow for our world population to continue to grow? If this second green revolution allows the world population to grow to 9 billion people, do we have a solution when it needs to grow to 10 billion? 11 billion?

The first green revolution was so successful that it tripled the world population without solving hunger. I can't wait to see what happens with round two.

Posted by John Dyer on 07 Feb 2012


Indeed, a glowing report of "Molecular breeding isn’t genetic engineering". However, I find it very hard to believe that the GMO/Monsanto/Chemical industries would not be involved in "owing" this technology as they are with patenting their gm seeds.

Could you comment please? In other words, is this just a trojan horse to push more modification of our food dependent on pesticides, chemicals, destruction of biodiversity, soils and ecosystems?

Thank you.

Posted by Pam Jacob on 07 Feb 2012


I am awed - nay, completely gobsmacked - by the comment from Jack Dale, the farmer from Arizona.

Quote: “My collegues talk of an EMP-attack from Iran/other, and if war occurs with Iran/Syria,
Russia & Red China may decide we should be struck--at best only the "Command & Control & Military, and at worse, a general strike that kills 40 million from blast, outright, china then occupying.”

Just as a matter of interest, is such mind-blowing paranoia confined merely to bucolic denizens of Arizona, or is this analysis of potential world affairs a commonly-held belief among US voters?

If the latter, then all I can say is, God help us all.

Posted by Nick Downie on 18 Feb 2012


Comments have been closed on this feature.
richard conniff ABOUT THE AUTHOR
Richard Conniff, a 2012 Alicia Patterson Journalism Fellow, is a National Magazine Award-winning writer whose articles have appeared in Time, Smithsonian, The Atlantic, The New York Times Magazine, National Geographic, and other publications. He is the author of several books, including The Species Seekers: Heroes, Fools, and the Mad Pursuit of Life on Earth. In previous articles for Yale Environment 360, he has written about the decline of wildlife in Africa and about Namibia’s community-based wildlife management system.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


As Drought Grips South Africa,
A Conflict Over Water and Coal

Facing one of the worst droughts in memory, South Africa’s leaders have doubled down on their support of the water-intensive coal industry. But clean energy advocates say the smartest move would be to back the country’s burgeoning wind and solar power sectors.
READ MORE

As Electric Cars Stall, A Move
To Greener Trucks and Buses

Low gasoline prices and continuing performance issues have slowed the growth of electric car sales. But that has not stymied progress in electrifying larger vehicles, including garbage trucks, city buses, and medium-sized trucks used by freight giants like FedEx.
READ MORE

New Green Challenge: How to
Grow More Food on Less Land

If the world is to have another Green Revolution to feed its soaring population, it must be far more sustainable than the first one. That means finding ways to boost yields with less fertilizer and rethinking the way food is distributed.
READ MORE

Can Data-Driven Agriculture
Help Feed a Hungry World?

Agribusinesses are increasingly using computer databases to enable farmers to grow crops more efficiently and with less environmental impact. Experts hope this data, detailing everything from water use to crop yields, can also help the developing world grow more food.
READ MORE

In Rural India, Solar-Powered
Microgrids Show Mixed Success

As India looks to bring electricity to the quarter of its population still without it, nonprofit groups are increasingly turning to solar microgrids to provide power to the nation’s villages. But the initiatives so far have faced major challenges.
READ MORE

 

MORE IN Reports


Hard-Pressed Rust Belt Cities
Go Green to Aid Urban Revival

by winifred bird
Gary, Indiana is joining Detroit and other fading U.S. industrial centers in an effort to turn abandoned neighborhoods and factory sites into gardens, parks, and forests. In addition to the environmental benefits, these greening initiatives may help catalyze an economic recovery.
READ MORE

As Drought Grips South Africa,
A Conflict Over Water and Coal

by keith schneider
Facing one of the worst droughts in memory, South Africa’s leaders have doubled down on their support of the water-intensive coal industry. But clean energy advocates say the smartest move would be to back the country’s burgeoning wind and solar power sectors.
READ MORE

Saving Amphibians: The Quest
To Protect Threatened Species

by jim robbins
The decline of the world’s amphibians continues, with causes ranging from fungal diseases to warmer and drier climates. Now, researchers are looking at ways to intervene with triage measures that could help save the most vulnerable populations.
READ MORE

How Rising CO2 Levels May
Contribute to Die-Off of Bees

by lisa palmer
As they investigate the factors behind the decline of bee populations, scientists are now eyeing a new culprit — soaring levels of carbon dioxide, which alter plant physiology and significantly reduce protein in important sources of pollen.
READ MORE

Can Uber-Style Buses Help
Relieve India's Air Pollution?

by jason overdorf
India’s megacities have some the deadliest air and worst traffic congestion in the world. But Indian startups are now launching initiatives that link smart-phone apps and private shuttle buses and could help keep cars and other motorized vehicles off the roads.
READ MORE

Trouble in Paradise: A Blight
Threatens Key Hawaiian Tree

by richard schiffman
The ʻohiʻa is Hawaii’s iconic tree, a keystone species that maintains healthy watersheds and provides habitat for numerous endangered birds. But a virulent fungal disease, possibly related to a warmer, drier climate, is now felling the island’s cherished 'ohi'a forests.
READ MORE

Climate Change Adds Urgency
To Push to Save World’s Seeds

by virginia gewin
In the face of rising temperatures and worsening drought, the world’s repositories of agricultural seeds may hold the key to growing food under increasingly harsh conditions. But keeping these gene banks safe and viable is a complicated and expensive challenge.
READ MORE

As World Warms, How Do We
Decide When a Plant is Native?

by janet marinelli
The fate of a tree planted at poet Emily Dickinson's home raises questions about whether gardeners can — or should — play a role in helping plant species migrate in the face of rising temperatures and swiftly changing botanical zones.
READ MORE

With New Tools, A Focus
On Urban Methane Leaks

by judith lewis mernit
Until recently, little was known about the extent of methane leaking from urban gas distribution pipes and its impact on global warming. But recent advances in detecting this potent greenhouse gas are pushing U.S. states to begin addressing this long-neglected problem.
READ MORE

Is Climate Change Putting
World's Microbiomes at Risk?

by jim robbins
Researchers are only beginning to understand the complexities of the microbes in the earth’s soil and the role they play in fostering healthy ecosystems. Now, climate change is threatening to disrupt these microbes and the key functions they provide.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“2016
The third annual Yale Environment 360 Video Contest is now accepting entries. Deadline to submit is June 10th.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.

e360 SPECIAL REPORT

“Tainted
A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

OF INTEREST



Yale