17 Aug 2015: Analysis

Global Extinction Rates: Why
Do Estimates Vary So Wildly?

Is it 150 species a day or 24 a day or far less than that? Prominent scientists cite dramatically different numbers when estimating the rate at which species are going extinct. Why is that?

by fred pearce

Most ecologists believe that we are in the midst of the sixth mass extinction. Humanity’s impact on nature, they say, is now comparable to the five previous catastrophic events over the past 600 million years, during which up to 95 percent of the planet’s species disappeared. We may very well be. But recent studies have cited extinction rates that are extremely fuzzy and vary wildly.

The Millennium Ecosystem Assessment, which involved more than a thousand experts, estimated an extinction rate that was later calculated at up to 8,700 species a year, or 24 a day. More recently, scientists at the U.N. Convention on Biological Diversity concluded that: “Every day, up to 150
golden toad
Wikimedia Commons
The golden toad, once abundant in parts of Costa Rica, was declared extinct in 2007.
species are lost." That could be as much as 10 percent a decade.

But nobody knows whether such estimates are anywhere close to reality. They are based on computer modeling, and documented losses are tiny by comparison. Only about 800 extinctions have been documented in the past 400 years, according to data held by the International Union for the Conservation of Nature (IUCN). Out of some 1.9 million recorded current or recent species on the planet, that represents less than a tenth of one percent.

Nor is there much documented evidence of accelerating loss. In its latest update, released in June, the IUCN reported "no new extinctions," although last year it reported the loss of an earwig on the island of St. Helena and a Malaysian snail. And some species once thought extinct have turned out to be still around, like the Guadalupe fur seal, which “died out” a century ago, but now numbers over 20,000.

Moreover, the majority of documented extinctions have been on small islands, where species with small gene pools have usually succumbed to human hunters. That may be an ecological tragedy for the islands concerned, but most species live in continental areas and, ecologists agree, are unlikely to prove so vulnerable.

But the documented losses may be only the tip of the iceberg. That’s because the criteria adopted by the IUCN and others for declaring species
One recent report noted that current extinctions were ‘up to 100 times higher than the background rate.’
extinct are very stringent, requiring targeted research. It’s also because we often simply don't know what is happening beyond the world of vertebrate animals that make up perhaps 1 percent of known species.

One way to fill the gap is by extrapolating from the known to the unknown. In June, Gerardo Ceballos at the National Autonomous University of Mexico — in collaboration with luminaries such as Paul Ehrlich of Stanford and Anthony Barnosky of the University of California, Berkeley — got headlines around the world when he used this approach to estimate that current global extinctions were “up to 100 times higher than the background rate.”

Ceballos looked at the recorded loss since 1900 of 477 species of vertebrates. That represented a loss since the start of the 20th century of around 1 percent of the 45,000 known vertebrate species. He compared this loss rate with the likely long-term natural “background” extinction rate of vertebrates in nature, which one of his co-authors, Anthony Barnosky of UC Berkeley recently put at two per 10,000 species per 100 years. This background rate would predict around nine extinctions of vertebrates in the past century, when the actual total was between one and two orders of magnitude higher.

Ceballos went on to assume that this accelerated loss of vertebrate species would apply across the whole of nature, leading him to conclude that extinction rates today are “up to a hundred times higher” than background.

A few days earlier, Claire Regnier, of the National Museum of Natural History in Paris, had put the spotlight on invertebrates, which make up the majority of known species but which, she said, currently “languish in the shadows.”

Regnier looked at one group of invertebrates with comparatively good records — land snails. And to get around the problem of under-reporting, she threw away the IUCN’s rigorous methodology and relied instead on expert assessments of the likelihood of extinction. Thus, she figured that Amastra baldwiniana, a land snail endemic to the Hawaiian island of Maui, was no more because its habitat has declined and it has not been seen for several
Marine populations tend to be better connected [so] the extinction threat is likely to be lower.’
decades. In this way, she estimated that probably 10 percent of the 200 or so known land snails were now extinct — a loss seven times greater than IUCN records indicate.

Extrapolated to the wider world of invertebrates, and making allowances for the preponderance of endemic land snail species on small islands, she concluded that “we have probably already lost 7 percent of described living species.” That could mean, she said, that perhaps 130,000 of recorded invertebrates have gone.

Several leading analysts applauded the estimation technique used by Regnier. But others have been more cautious about reading across taxa. They say it is dangerous to assume that other invertebrates are suffering extinctions at a similar rate to land snails. Mark Costello, a marine biologist of the University of Auckland in New Zealand, warned that land snails may be at greater risk than insects, which make up the majority of invertebrates. “Because most insects fly, they have wide dispersal, which mitigates against extinction,” he told me.

The same should apply to marine species that can swim the oceans, says Alex Rogers of Oxford University. Only 24 marine extinctions are recorded by the IUCN, including just 15 animal species and none in the past five decades. Some think this reflects a lack of research. But Rogers says: “Marine populations tend to be better connected [so] the extinction threat is likely to be lower.”

Whatever the drawbacks of such extrapolations, it is clear that a huge number of species are under threat from lost habitats, climate change, and other human intrusions. And while the low figures for recorded extinctions
Can we really be losing thousands of species for every loss that is documented?
look like underestimates of the full tally, that does not make the high estimates right.

Can we really be losing thousands of species for every loss that is documented? Some ecologists believe the high estimates are inflated by basic misapprehensions about what drives species to extinction. So where do these big estimates come from?

Mostly, they go back to the 1980s, when forest biologists proposed that extinctions were driven by the “species-area relationship.” This relationship holds that the number of species in a given habitat is determined by the area of that habitat. The biologists argued, therefore, that the massive loss and fragmentation of pristine tropical rainforests — which are thought to be home to around half of all land species — will inevitably lead to a pro-rata loss of forest species, with dozens, if not hundreds, of species being silently lost every day. The presumed relationship also underpins assessments that as much as a third of all species are at risk of extinction in the coming decades as a result of habitat loss, including from climate change.

But, as rainforest ecologist Nigel Stork, then at the University of Melbourne, pointed out in a groundbreaking paper in 2009, if the formula worked as predicted, up to half the planet’s species would have disappeared in the past 40 years. And they haven’t. “There are almost no empirical data to support estimates of current extinctions of 100, or even one, species a day,” he concluded.

He is not alone. In 2011, ecologist Stephen Hubbell of UC Los Angeles concluded, from a study of forest plots around the world run by the Smithsonian Institution, that as forests were lost, “more species always remained than were expected from the species-area relationship.” Nature is proving more adaptable than previously supposed, he said. It seems that most species don’t simply die out if their usual habitats disappear. Instead they hunker down in their diminished refuges, or move to new habitats.

Claude Martin, former director of the environment group WWF International — an organization that in his time often promoted many of the high scenarios of future extinctions — now agrees that the “pessimistic projections” are not playing out. In his new book, On The Edge, he points out that El Salvador has lost 90 percent of its forests but only three of its 508 forest bird species. Meanwhile, the island of Puerto Rico has lost 99 percent of its forests but just seven native bird species, or 12 percent.

Some ecologists believe that this is a temporary stay of execution, and that thousands of species are living on borrowed time as their habitat disappears. But with more than half the world’s former tropical forests
Some researchers now question the widely held view that most species remain to be described.
removed, most of the species that once populated them live on. If nothing else, that gives time for ecological restoration to stave off the losses, Stork suggests.

But we are still swimming in a sea of unknowns. For one thing, there is no agreement on the number of species on the planet. Researchers have described an estimated 1.9 million species (estimated, because of the risk of double-counting). But, allowing for those so far unrecorded, researchers have put the real figure at anywhere from two million to 100 million.

Last year Julian Caley of the Australian Institute of Marine Sciences in Townsville, Queensland, complained that “after more than six decades, estimates of global species richness have failed to converge, remain highly uncertain, and in many cases are logically inconsistent.”

That may be a little pessimistic. Some semblance of order is at least emerging in the area of recorded species. In March, the World Register of Marine Species, a global research network, pruned the number of known marine species from 418,000 to 228,000 by eliminating double-counting. Embarrassingly, they discovered that until recently one species of sea snail, the rough periwinkle, had been masquerading under no fewer than 113 different scientific names.

Costello says double-counting elsewhere could reduce the real number of known species from the current figure of 1.9 million overall to 1.5 million. That still leaves open the question of how many unknown species are out there waiting to be described. But here too some researchers are starting to draw down the numbers.

Back in the 1980s, after analyzing beetle biodiversity in a small patch of forest in Panama, Terry Erwin of the Smithsonian Institution calculated that the world might be home to 30 million insect species alone — a far higher figure than previously estimated. His numbers became the received wisdom. But new analyses of beetle taxonomy have raised questions about them.

In June, Stork used a collection of some 9,000 beetle species held at London’s Natural History Museum to conduct a reassessment. He analyzed patterns in how collections from particular places grow, with larger specimens found first, and concluded that the likely total number of beetle species in the world might be 1.5 million. From this, he judged that a likely figure for the total number of species of arthropods, including insects, was between 2.6 and 7.8 million.

Some researchers now question the widely held view that most species remain to be described — and so could potentially become extinct even before we know about them. Costello thinks that perhaps only a third of species are yet to be described, and that “most will be named before they go extinct.”

Does all this argument about numbers matter? Yes, it does, says Stork. “Success in planning for conservation ... can only be achieved if we know what species there are, how many need protection and where. Otherwise,


Fate of the Passenger Pigeon
Looms as a Somber Warning

fate of the passenger pigeon
Last September 1 marked the 100th anniversary of the death of Martha, the last known passenger pigeon on earth. The extinction of this once-abundant North American bird still stands as a cautionary tale.
we have no baseline against which to measure our successes.” Or indeed to measure our failures.

None of this means humans are off the hook, or that extinctions cease to be a serious concern. Extinction rates remain high. And, even if some threats such as hunting may be diminished, others such as climate change have barely begun. Moreover, if there are fewer species, that only makes each one more valuable.

But Stork raises another issue. He warns that, by concentrating on global biodiversity, we may be missing a bigger and more immediate threat — the loss of local biodiversity. That may have a more immediate and profound effect on the survival of nature and the services it provides, he says.

Ecosystems are profoundly local, based on individual interactions of individual organisms. It may be debatable how much it matters to nature how many species there are on the planet as a whole. But it is clear that local biodiversity matters a very great deal.

POSTED ON 17 Aug 2015 IN Biodiversity Climate Forests Oceans Policy & Politics Science & Technology Science & Technology Asia 


About 60 years ago we used to go fishing for breakfast and get a small salmon in no time. Now you can sit in your boat all day and never see a salmon. Salmon in BC are not extinct but does that matter if there are just a fraction of what there used to be?
Posted by bob fearn on 18 Aug 2015

The widely varying estimates of biodiversity losses owe much to the publication of The Global 2000 Report to the President, (US Government Printing Office, Washington, DC, 1980), which posited an inverse relation between habitat and biodiversity. Although the general inverse relationship hypothesized is almost surely correct, the publication in the document of a hypothesized "empirical" relationship, which was not labeled to be hypothetical, was clearly inaccurate. This hypothesized illustrative relationship was then widely used to estimate future species losses based on wild projections of habitat losses. For example, Norman Myers testified to the US Congress in 1980 that almost all of the world's tropical forests would be gone by 2000 (Congressional Record 1980). Fortunately neither Myer's estimate nor the many estimates of huge species losses derived from the Global 2000 publication have been realized.

Posted by Roger Sedjo on 20 Aug 2015

What other available data and related indicia of
planetary species and ecosystem health should be
evaluated besides species counts? A guess-a-mated
number of species and extinctions rates is an
unreliable measure it mostly says more about what
we do not know than what we do know. Perhaps if we
were not spending most of America's wealth on
Empire policing with a massive military America could
afford to fund some science?
Posted by robert dresdner on 23 Sep 2015

Amazing post.
Posted by Beeks on 01 Oct 2015


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

Fred Pearce is a freelance author and journalist based in the U.K. He serves as environmental consultant for New Scientist magazine and is the author of numerous books, including The Land Grabbers. Previously for Yale Environment 360, he has written about threats to Oman's ancient water systems and plans to develop a major port on an unspoiled Caribbean isle.



How Far Can Technology Go
To Stave Off Climate Change?

With carbon dioxide emissions continuing to rise, an increasing number of experts believe major technological breakthroughs —such as CO2 air capture — will be necessary to slow global warming. But without the societal will to decarbonize, even the best technologies won’t be enough.

Republican Who Led EPA Urges
Confronting Trump on Climate

William K. Reilly, a Republican and one-time head of the EPA, is dismayed that a climate change skeptic has been named to lead his former agency. But in a Yale e360 interview, he insists environmental progress can be made despite resistance from the Trump administration.

The Legacy of the Man Who
Changed Our View of Nature

The 19th-century German scientist Alexander von Humboldt popularized the concept that the natural world is interconnected. In a Yale e360 interview, biographer Andrea Wulf explains how Humboldt’s vision helped create modern environmentalism.

A Drive to Save Saharan Oases
As Climate Change Takes a Toll

From Morocco to Libya, the desert oases of the Sahara's Maghreb region are disappearing as temperatures rise and rainfall decreases. Facing daunting odds, local residents are employing traditional water conservation techniques to try to save these ancient ecosystems.

An Unusually Warm Arctic Year:
Sign of Future Climate Turmoil?

This year will almost certainly go down as the warmest on record in the Arctic, with autumn temperatures soaring 36 degrees F above normal. In a Yale e360 interview, climatologist Jennifer Francis explains why a swiftly warming Arctic may have profound effects on global weather.


MORE IN Analysis

How Far Can Technology Go
To Stave Off Climate Change?

by david biello
With carbon dioxide emissions continuing to rise, an increasing number of experts believe major technological breakthroughs —such as CO2 air capture — will be necessary to slow global warming. But without the societal will to decarbonize, even the best technologies won’t be enough.

With Trump, China Emerges
As Global Leader on Climate

by isabel hilton
With Donald Trump threatening to withdraw from the Paris Agreement, China is ready to assume leadership of the world’s climate efforts. For China, it is a matter of self-interest – reducing the choking pollution in its cities and seizing the economic opportunities of a low-carbon future.

What a Trump Win Means
For the Global Climate Fight

by david victor
Donald Trump’s ascension to the presidency signals an end to American leadership on international climate policy. With the withdrawal of U.S. support, efforts to implement the Paris agreement and avoid the most devastating consequences of global warming have suffered a huge blow.

The Methane Riddle: What Is
Causing the Rise in Emissions?

by fred pearce
The cause of the rapid increase in methane emissions since 2007 has puzzled scientists. But new research finds some surprising culprits in the methane surge and shows that fossil-fuel sources have played a much larger role over time than previously estimated.

As Arctic Ocean Ice Disappears,
Global Climate Impacts Intensify

by peter wadhams
The top of the world is turning from white to blue in summer as the ice that has long covered the north polar seas melts away. This monumental change is triggering a cascade of effects that will amplify global warming and could destabilize the global climate system.

How Climate Change Could Jam
The World's Ocean Circulation

by nicola jones
Scientists are closely monitoring a key current in the North Atlantic to see if rising sea temperatures and increased freshwater from melting ice are altering the “ocean conveyor belt” — a vast oceanic stream that plays a major role in the global climate system.

Wildlife Farming: Does It Help
Or Hurt Threatened Species?

by richard conniff
Wildlife farming is being touted as a way to protect endangered species while providing food and boosting incomes in rural areas. But some conservation scientists argue that such practices fail to benefit beleaguered wildlife.

What Would a Global Warming
Increase of 1.5 Degrees Be Like?

by fred pearce
The Paris climate conference set the ambitious goal of finding ways to limit global warming to 1.5 degrees Celsius, rather than the previous threshold of 2 degrees. But what would be the difference between a 1.5 and 2 degree world? And how realistic is such a target?

After Paris, A Move to Rein In
Emissions by Ships and Planes

by fred pearce
As the world moves to slash CO2 emissions, the shipping and aviation sectors have managed to remain on the sidelines. But the pressure is now on these two major polluting industries to start controlling their emissions at last.

Abrupt Sea Level Rise Looms
As Increasingly Realistic Threat

by nicola jones
Ninety-nine percent of the planet's freshwater ice is locked up in the Antarctic and Greenland ice caps. Now, a growing number of studies are raising the possibility that as those ice sheets melt, sea levels could rise by six feet this century, and far higher in the next, flooding many of the world's populated coastal areas.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.


An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.