26 Oct 2015: Interview

How 'Third Way' Technologies
Can Help Turn Tide on Climate

In a Yale Environment 360 interview, Australian scientist and author Tim Flannery explains how the development of technologies that mimic the earth’s natural carbon-removing processes could provide a critical tool for slowing global warming.

by richard schiffman

Massive seaweed farms that suck carbon dioxide out of the atmosphere and counteract ocean acidification. The widespread adoption of carbon fiber technology that extracts CO2 from the air and turns it into cars and other industrial products. Concrete manufacturing that is carbon-negative rather than the energy-guzzling Portland cement used today. And giant chiller boxes installed in Antarctica that super-freeze the
Damien Pleming
Tim Flannery
already frigid air there, producing “CO2 snow” that can be sequestered in the continent’s massive ice sheet.

These and other ideas represent what Australian scientist Tim Flannery calls “third way technologies” — safe methods to reduce atmospheric carbon dioxide levels that could be adopted in concert with large-scale reductions in greenhouse gas emissions.

Flannery, former head of the Australian Climate Commission, lays out these ideas in his latest book, Atmosphere of Hope. In an interview with Yale Environment 360, he explains that unlike risky geoengineering schemes, these approaches “strengthen Earth’s own self-regulatory system by drawing C02 out of the atmosphere in ways the planet naturally does already.” Flannery, who says he is heartened by the increasingly widespread adoption of wind and solar power, believes that if the world community can develop third way technologies quickly enough and harness the political and economic will to apply them at scale, there may yet be light at the end of the climate tunnel.

Yale Environment 360: In your earlier book, The Weather Makers, you forecasted a bleak future if we don’t change course. Yet you seem guardedly optimistic in your latest book.

Tim Flannery: I’m definitely more hopeful and that’s only happened in the last two years. I was pretty despairing after Copenhagen. But some things have happened recently that have given me new hope. One of the most heartening has been the change in public knowledge of climate change and attitudes toward it. When I wrote about climate change ten years ago I had to use a slide presentation with graphs showing the increase of C02 concentrations and increasing temperatures and all the rest. That is because back then the major impacts of climate change had not really hit yet. Whereas when I go around the world and speak now,
There is still a small band of deniers ... [but] climate change is now a lived experience of most people.’
everyone has a story about how climate change is impacting their lives. There is still a small band of deniers. But they are definitely in the minority now. Climate change is a lived experience of most people.

e360: You cite in the new book a report by the International Energy Agency saying that global carbon emissions had stopped rising between 2013 and 2014. What is the significance of this?

Flannery: That is the second bit of good news, the first being the increasing awareness of the issue. If the IEA data is correct, it’s a landmark achievement, to see global emissions from energy sources stall, and also to see the decoupling of fossil fuel emissions from economic growth. The global economy grew, but the emissions from energy sources — everything from transport to electricity production — stalled at 32.7 billion tons of emissions. That is really unexpected. Nobody thought that we would see that as early as we have.

e360: What factors have caused this leveling of emissions?

Flannery: There are two big factors. One is the incredible success of wind and solar in terms of penetration into the market. And the second has been the billions and billions of small actions that people like you and I have been doing, changing our light bulbs, making our housing more energy-efficient, cycling to work. These sorts of things have cumulatively been having a huge impact. I was skeptical whether these actions would all add up to anything. Well, they have now added up to something really huge.

e360: Some scientists have proposed geoengineering schemes like seeding the high atmosphere with sulfur or adding iron to the sea as ways to cut down on warming. Are these bad ideas?

Flannery: Yes, they are really bad ideas. Take injecting sulfur into the stratosphere [to deflect sunlight]: the problem is just going to fester under that sulfur layer. The C02 is going to continue to build up and poison our oceans with acidification. Modeling has shown how strongly the South Asian monsoons would be influenced by such a move, and one to four
The scary thing about these geoengineering ideas is that they are really being taken seriously now.’
billion people depend on those monsoons for their survival.

The scary thing about these geoengineering ideas is that they are really being taken seriously now. And they can be done unilaterally, there is no global treaty regulating their use. There are four separate teams working on various geoengineering possibilities in China alone. China is going to be seriously impacted by climate change — we know that, the government knows that, and they are looking at the possibility of using some of these Band-Aid solutions to derive some short term benefit in a way that would have massive long term consequences for many people around the planet.

e360: In your book, you talk about what you call “third way technologies.” What are these, and how do they differ from geoengineering?

Flannery: Some of them have been considered in the past as forms of geoengineering. But we need to be very careful about our language in this. I had to invent that term— third way technologies— to describe a basket of approaches that work in synergy with the planet to help reinforce the way the Earth system stabilizes itself. And they do that by drawing carbon dioxide directly out of the atmosphere and then putting it into something useful or storing it somewhere safely. So it is very much a functional distinction between geoengineering’s Band-Aid solutions and the third way technologies, which strengthen Earth’s own self-regulatory system by drawing C02 out of the atmosphere in ways the planet naturally does already, or in ways that simulate that.

e360: You write about two categories of third way technologies, the biological and the chemical. Could you talk about the biological approach?

Flannery: For example, reforestation is really basic. Trees are just congealed carbon dioxide. So when you plant a forest, what you are doing is you are using the power of the sun harnessed by photosynthesis to draw C02 out of the atmosphere and congeal it as living trees. You can also then take some of those plant products that you grow and turn them into a form of carbon that will last longer, that won’t rot away as quickly by converting it to biochar. Biochar is a form of charcoal derived from various plant products. You can plow it into your agricultural soils or store it somewhere and it will stay there as a mineralized form of carbon for many years. The biochar industry is still very small. In 2013 it was only producing a thousand tons of salable product, so it is an option that is yet to grow to
Seaweed grows at 30 to 60 times the rate of land-based plants, so it can draw out lots of C02.’

e360: You are really hopeful about seaweed farming. How would that work?

Flannery: Seaweed grows at 30 to 60 times the rate of land-based plants, so it can draw out lots of C02. One study suggests that if you cover 9 percent of the world’s oceans in seaweed farms, you could draw down the equivalent of all our current emissions — more than 40 gigatons a year — and grow enough protein to feed a population of 10 billion people. That’s a huge opportunity.

Seaweed farms can also reverse ocean acidification. Off the coast of China, there are about 500 square kilometers of seaweed farms that are used to produce edible seaweed for the food market. They have been very well studied, and we’ve seen there that pH can rise as high as 10 around those seaweed farms. At the moment with an acidified ocean it is 8.1. You could buffer oceans and they are fantastic places for growing fish, shellfish, or prawns, just because of that buffering impact. But you then have the problem of what to do with all that seaweed. You certainly don’t want it just sitting there and rotting away. One of the proposals is that bio-digesters be used. These are very familiar to famers, the kinds of things you put your agricultural waste in and generate methane, which you can use to produce electricity.

e360: Turning to the chemical third way technologies, you write about carbon-negative concrete. What is that?

Flannery: It is a kind of concrete that uses different components for the cement from conventional concrete. It doesn’t emit C02 during the manufacturing process. As the concrete sets and matures, it actually absorbs C02 into its structure. So it is carbon-negative and its manufacturers claim that it is lighter, stronger and more durable than concretes made with Portland cement. But because it is a new product, it doesn’t have a track record. No one is going to build the Brooklyn Bridge from it just yet, because we aren’t sure how it is going to stand up. But there are a lot of low-risk uses for concrete that we can begin with as we try to grow that industry. And it is incredibly important because concrete manufacture accounts for about 5 percent of global emissions.

e360: Olivine is one of the most common rocks in the Earth’s crust with the ability to chemically bind with CO2 in the atmosphere. How could this be used?

Flannery: There is a roofing company in the Netherlands that makes a paint with an olivine based rock that takes C02 out of the atmosphere directly into your roof. There are also people who are using crushed olivine as a soil amendment, absorbing C02 as the rocks decay. There are proposals to create beach sand from olivine. There are other proposals to use olivine to treat the exhaust from shipping, then put it in the sea to help take C02 out of the waters, in a similar way that seaweed farming does. e360: You report in your new book that fuels, carbon nanofibers, and certain types of plastics can be made directly from C02 in the atmosphere. But these are futuristic possibilities. Won’t it take a long time to get these technologies up and running at scale?

Flannery: It’s still at an early stage, but all indications are that the plastic industry is set to be transformed by these technologies as we move away from fossil fuels. And the carbon fiber possibilities are just astonishing. If you want a very light, very strong material, carbon fiber is what you use. At the moment it is very expensive to manufacture. But just a month ago a major breakthrough was announced by a company that devised a way of manufacturing carbon nanofibers directly out of C02 in the atmosphere at one tenth of the production cost of other methods. As carbon nanofibers become cheaper to manufacture, they will start competing directly with steel and aluminum, both of which are very energy intensive and produce
A company has devised a way of manufacturing carbon nanofibers directly out of C02 in the atmosphere.’
lots of emissions.

e360: There are already ways to take C02 directly out of the atmosphere or out of the exhaust stream from power plants. But the problem is where to safely store the captured greenhouse gas.

Flannery: Previously, carbon capture and storage was conceived of as something that you would apply to the end of a coal powered power plant, capture the C02, and store it in bedrock somewhere near that plant. But if you put C02 under the ground, the C02 remains buoyant, the stuff is always trying to escape, to go upwards because it is a gas. In the oceans, however, things are quite different. Water pressure at two or three kilometers depth is sufficient that C02 remains stable. And if you try to bury it even in shallow marine sediments it becomes a solid on its own.

When you think about it, the ocean floor is where most of that excess C02 is destined to reside, or most of it anyway over geological time. The C02 is absorbed into the oceans, it is turned into a carbonate on the bottom of the sea as limestone or whatever. So the idea that we should pump C02 into deep ocean sediments at 2 or 3 kilometers is really mimicking what happens over the longer term anyway and it provides a stable environment for carbon to be stored.

e360: One of the most surprising ideas in your book is the proposal to create C02 snow in Antarctica. Could you talk about this?

Flannery: C02 falls out of the atmosphere as snow at -75 degrees Celsius, and sometimes it reaches -90 degrees Celsius over the Antarctic icecap. So C02 is already falling as snow out of the air at times in Antarctica. The thing is it doesn’t get buried or stored anywhere. As temperatures warm, it sublimates and goes back into the air. So the proposal for the Antarctic is that you would build some big chiller boxes, say 100 yards cubed, you would power them using wind energy, which is already being used by the research stations in Antarctica for their electricity generation. You need about half the installed wind power that Germany presently has to run these chiller boxes to capture a gigaton of C02 in the form of snow. So the idea is that you would put the chiller box out, you’d cool the air a few tens of degrees, the C02 would fall out as snow, you would bury it under ice and it would stay there. That is a very exciting option.

e360: Most of these third way approaches are going to require a tremendous amount of research and development, not to mention time, before they become economically viable. Who is going to pay for this? And can we really wait until all the details are worked out?

Flannery: If you look at the development pathways for wind and solar, you see how long they are. It has taken three or four decades to have gotten where we are today. And it is going to be the same for any of these third way technologies.


Solar Geoengineering: Weighing
Costs of Blocking the Sun’s Rays

Solar Geoengineering
With prominent scientists now calling for experiments to test whether pumping sulfates into the atmosphere could safely counteract global warming, critics worry that the world community may be moving a step closer to deploying this controversial technology.
Some of them are going to be a bit more self-propelling because they will be much more profitable than others. So for example, I can imagine carbon nanofiber manufacture really taking off through private investment. But others such as storage of atmospheric C02 under the Antarctic ice, they may need some sort of government assistance.

e360: Why has it become necessary to develop these radical new approaches?

Flannery: We’re in a really difficult position right now. Even if we stop all fossil fuel use today, the planet is going to warm by one-and-a-half degrees within decades. The reality is we are seeing significant damage at one degree, which is near where we are now. We’re committed [by inertia in the system] to 1.5 degrees. A 1.5 degree rise is already looking like it is going to be too much. Sea level rise is going to be tremendously destructive. So the argument is that we need to do two things at once. We need to reduce emissions as fast as we can, and the second is to start investing now in these new technologies, in research and development.

POSTED ON 26 Oct 2015 IN Business & Innovation Climate Forests Oceans Oceans Science & Technology Science & Technology Sustainability North America 


I believe that the entire strategy of global warming/climate change mitigation is mistaken, and instead of minimizing carbon emissions, or even geoengineering less solar radiation heating, we need to instead focus on removing the CO2 from the air by making useful products profitably.

In other words, using capitalism and the profit motive to turn CO2 in the air into an asset that we exploit. This is far superior to a regulated carbon diet strategy.


"The method can run on solar power, so it serves as a carbon sink. If machines were spread over a large area — 10% of the size of the Sahara Desert—the scientists calculated that they could remove enough carbon in the atmosphere to return to pre-industrial levels in about a decade."
Posted by Brad Arnold on 27 Oct 2015

So is he actually suggesting that we rely on seaweed to save the world? It would require covering an area of ocean 4 times the size of Australia.

I think a little reality mixed in with the hype makes for better reporting.
Posted by E. Freeman on 30 Oct 2015

There is a lot of research going on in terms of biochar & concrete. As one example, Researchers at Hochschule Geisenheim University recently presented information on a concrete and biochar mix that not only sequestered carbon but facilitates NOx adsorption and has improved fire resistance over standard concrete.
Posted by K Draper on 30 Oct 2015

Tim Flannery is seemingly referencing our paper in the J. Appl. Meteor. Clim. (2013), and there are some errors in Tim's comments. First, to snow out the CO2 at one bar of pressure in Antarctica would require refrigeration temperatures as low as 133K or -140C. Further the reference to the colder temperatures over the ice cap is equally ineffective for two reasons: not cold enough and also the pressure is less than one bar. My students and I appreciate the reference to our work but it should be checked more closely when making the reference.
Posted by Ernie Agee on 02 Nov 2015

The urgency of the climate crisis requires us to assess very carefully which methods for reducing greenhouse gas emissions and possibly removing some CO2 from the atmosphere have actually been proven. Promoting unproven ideas as if they were definite options is dangerous because it distracts from the proven ways of mitigating climate change - above all from the need to phase out fossil fuel burning, to protect ecosystems and allow damaged ones to regenerate. Flannery's claims about storing CO2 snow in Antarctica have already been questioned on this blog. The flaw in Flannery's claims about sequestering CO2 in seaweed is perhaps the most obvious: If seaweed is turned into fuel or used as food then all the carbon will end up back in the atmosphere. No CO2 sequestration there. There problems with various other claims, too. Take 'carbon negative cement'. In his book he explains that he's referring to the company Solidia. But Solidia only claim on their website that their method reduces CO2 emissions from cement manufacture - they don't call it carbon negative at all. Or take biochar: Scientific studies show that huge uncertainties remain regarding the impacts which different biochars have on carbon in different soils. Supporting general research is one thing, calling for large investments into unproven technologies is quite another.
Posted by Almuth Ernsting on 24 Nov 2015

Carbon 'negative' cement is discussed in this article.
Posted by Patricia R. Pearl on 01 Dec 2015

Of course there is a fourth way which no one seems to be discussing. The issue isn't carbon dioxide, the issue is what solar radiation does to carbon dioxide. We are not really interested in carbon dioxide levels, only in global atmospheric and ocean temperatures.

We could allow carbon dioxide levels to rise if we could also find a way to reduce the amount of solar radiation entering the atmosphere. We need a big parasol somewhere between Earth and the sun or something in the upper atmosphere to reflect some of the sun's rays.

Carbon dioxide levels would still need to be controlled in order to stop ocean acidification and other unwanted effects.
Posted by Phil Holden on 09 Dec 2015


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

Richard Schiffman is a New York-based environmental journalist, poet, and author of two biographies. His work has appeared in The Guardian, The Washington Post, The Christian Science Monitor, and on National Public Radio, among other outlets.



An Unusually Warm Arctic Year:
Sign of Future Climate Turmoil?

This year will almost certainly go down as the warmest on record in the Arctic, with autumn temperatures soaring 36 degrees F above normal. In a Yale e360 interview, climatologist Jennifer Francis explains why a swiftly warming Arctic may have profound effects on global weather.

How Warming Threatens the Genetic
Diversity of Species, and Why It Matters

Research on stoneflies in Glacier National Park indicates that global warming is reducing the genetic diversity of some species, compromising their ability to evolve as conditions change. These findings have major implications for how biodiversity will be affected by climate change.

At Standing Rock, A Battle
Over Fossil Fuels and Land

The Native American-led protest against the Dakota Access pipeline has gained global attention. In an e360 interview, indigenous expert Kyle Powys Whyte talks about the history of fossil fuel production on tribal lands and the role native groups are playing in fighting climate change.

African Wetlands Project: A Win
For the Climate and the People?

In Senegal and other developing countries, multinational companies are investing in programs to restore mangrove forests and other wetlands that sequester carbon. But critics say these initiatives should not focus on global climate goals at the expense of the local people’s livelihoods.

On College Campuses, Signs of
Progress on Renewable Energy

U.S. colleges and universities are increasingly deploying solar arrays and other forms of renewable energy. Yet most institutions have a long way to go if they are to meet their goal of being carbon neutral in the coming decades.


MORE IN Interviews

From Obama’s Top Scientist,
Words of Caution on Climate

by elizabeth kolbert
As President Obama’s chief science adviser, John Holdren has been instrumental in developing climate policy. In an interview with Yale e360, Holdren talks about the urgency of the climate challenge and why he hopes the next administration will not abandon efforts to address it.

An Unusually Warm Arctic Year:
Sign of Future Climate Turmoil?

by fen montaigne
This year will almost certainly go down as the warmest on record in the Arctic, with autumn temperatures soaring 36 degrees F above normal. In a Yale e360 interview, climatologist Jennifer Francis explains why a swiftly warming Arctic may have profound effects on global weather.

Are Trees Sentient Beings?
Certainly, Says German Forester

by richard schiffman
In his bestselling book, The Hidden Life of Trees, Peter Wohlleben argues that to save the world’s forests we must first recognize that trees are “wonderful beings” with innate adaptability, intelligence, and the capacity to communicate with — and heal — other trees.

At Standing Rock, A Battle
Over Fossil Fuels and Land

by katherine bagley
The Native American-led protest against the Dakota Access pipeline has gained global attention. In an e360 interview, indigenous expert Kyle Powys Whyte talks about the history of fossil fuel production on tribal lands and the role native groups are playing in fighting climate change.

The Moth Snowstorm: Finding
True Value in Nature’s Riches

by roger cohn
Journalist Michael McCarthy has chronicled the loss of wildlife in his native Britain and globally. In an interview with Yale Environment 360, he talks about why he believes a new defense of the natural world is needed – one based on the joy and spiritual connection it provides for humans.

What’s Killing Native Birds in
The Mountain Forests of Kauai?

by diane toomey
Biologist Eben Paxton is sounding the alarm about the catastrophic collapse of native bird populations on the Hawaiian island of Kauai. His group's research has uncovered the culprit: disease-carrying mosquitoes that have invaded the birds' mountain habitat.

Exploring How and Why
Trees ‘Talk’ to Each Other

by diane toomey
Ecologist Suzanne Simard has shown how trees use a network of soil fungi to communicate their needs and aid neighboring plants. Now she’s warning that threats like clear-cutting and climate change could disrupt these critical networks.

At Ground Zero for Rising Seas,
TV Weatherman Talks Climate

by diane toomey
John Morales is part of a new breed of television weather forecasters seeking to educate viewers on climate change and the threat it poses. In South Florida, where sea level rise is already causing periodic flooding, he has a receptive audience.

Unable to Endure Rising Seas,
Alaskan Villages Stuck in Limbo

by diane toomey
As an advocate for Alaska’s Native communities, Robin Bronen points to a bureaucratic Catch-22 — villages cannot get government support to relocate in the face of climate-induced threats, but they are no longer receiving funds to repair their crumbling infrastructure.

Why CO2 'Air Capture' Could Be
Key to Slowing Global Warming

by richard schiffman
Physicist Klaus Lackner has long advocated deploying devices that extract carbon dioxide from the atmosphere to combat climate change. Now, as emissions keep soaring, Lackner says in a Yale Environment 360 interview that such “air capture” approaches may be our last best hope.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.


An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.