03 Oct 2013: Report

Iceland Seeks to Cash In On
Its Abundant Renewable Energy

Still reeling from recent financial crises, Iceland is hoping to use its bountiful sources of geothermal and hydroelectric energy to help boost its economy. Among the country’s more ambitious plans is an undersea cable to carry renewably generated electricity to the U.K.

by cheryl katz

Amid clouds of steam spewing from magma-heated pockets beneath Iceland’s Reykjanes Peninsula, a start-up company is tapping volcanic forces to transform the climate change agent carbon dioxide from a problem into a solution.

Using geothermal electricity and flue gas from the Svartsengi power plant nearby, Carbon Recycling International (CRI) fuses waste CO2, with hydrogen split from water to create "renewable methanol." The Reykjavik-based clean-tech venture recently began exporting the product to the Netherlands, where it is blended into gasoline. Its name, conjuring images of a comic book superhero, is Vulcanol. While others elsewhere are
Svartsengi geothermal plant
Johann Helgason
Svartsengi geothermal plant in Iceland supplies electricity and gases for renewable methanol branded as Vulcanol.
working on similar efforts to make green fuel from repurposed CO2, only CRI has been able to do it commercially, thanks to Iceland’s abundant supply of low-cost, earth-generated power.

As Iceland struggles to get back on its feet after a fiscal crisis that began in 2008, CRI is one of numerous ventures seeking to turn the geologic hotspot’s renewable energy bounty into an exportable economic asset. Pioneers in harnessing geothermal heat for power, Icelanders are now bringing their expertise to a variety of novel endeavors, including a 1,000-kilometer undersea cable carrying renewably generated electricity to Europe.

Aside from oil for transportation, Iceland’s power comes entirely from sustainable sources.
This volcano- and glacier-covered island straddling the Mid-Atlantic Ridge already leads the world in renewable energy use — aside from oil for transportation, Iceland’s power comes entirely from sustainable sources. Geothermal steam heats most buildings and generates about a quarter of its electricity, with the rest coming from hydropower. Inexpensive electricity — up to 35 percent cheaper than in the U.S. — has lured aluminum smelters and other power-intensive industries.

But analysts say Iceland’s energy resources are vastly underutilized, and exploiting them is crucial to an economy whose current biggest driver is fishing. So a spate of projects are in the works, including new, carbon-free consumer products and a promising method for locking away greenhouse gases, which could benefit CO2 sequestration efforts worldwide.

"We’re trying to create a value and a premium from our ability here in Iceland to utilize these renewable energy resources," said Benedikt Stefansson, CRI’s director of business development. In July, a Canadian company invested $5 million in the company.

"Iceland has a lot to offer," said Thorsteinn Sigfusson, director general of Innovation Center, Iceland, a start-up incubator with several energy-related ventures. Sigfusson believes inventions capitalizing on renewable power will provide important sources of foreign revenue for the country.

One of the boldest ideas, with potentially the greatest economic benefit, is the proposed $2.1 billion electrical interconnector to Scotland, which would become the world’s longest undersea power cable. The project is the brainchild of state-owned utility Landsvirkjun, which operates the country’s hydroelectric system. Currently, about 80 percent of Iceland’s electricity goes to heavy industry. The cable scheme would increase Iceland’s geothermal operations and switch all of its domestic energy needs to these sources, then sell its hydroelectricity to the U.K. as a peak power supply.

"This is of a scale and scope that is foreign to Iceland," Bjorgvin Sigurdsson, executive vice president for marketing and business development, said in an interview at Landsvirkjun’s Reykjavik offices. "It’s actually a way to rethink the whole system… The idea is to use geothermal to displace hydro, so the hydro is available for use as the flexibility mechanism for export."

Iceland and the U.K. signed a memorandum of understanding on the project last year, and this fall Iceland’s parliament and cabinet are expected to decide whether to move forward. Big hurdles at present include public fears that local electricity prices will skyrocket, concerns that the project will create jobs abroad instead of in Iceland, and a steep cost that requires guaranteed revenues through an as-yet-unsigned, long-term power contract with the U.K.
Many of these renewable energy projects come with a high price tag.

Other green energy projects in Iceland are combining the country’s clean power resources and distinctive geology to create eco-friendly consumer goods.

On a recent morning at the Innovation Center’s R&D facility north of Reykjavik, Sigfusson and colleague Árdís Ármannsdóttir played with a bundle of silky, gray strings, which he calls "fairy hair." Made from basalt — the volcanic rock covering much of the island — the filament offers a green alternative to carbon fiber, a ubiquitous manufacturing material synthesized from oil and natural gas.

"Carbon fiber’s footprint is very bad," said Sigfusson, a renewable energy expert who is also a physics professor at the University of Iceland. "But there is a way to go about it which is much greener. This will be possible to do with green heat from our power plants and with no carbon ingredients. It will be amazingly green."

The idea isn’t new — basalt fiber has been around since World War II, but it was difficult to work with and never gained widespread use. Now, using technical advances developed at ICI, Sigfusson predicts the new filament will replace carbon fiber in products like car bumpers and boats, becoming an important Icelandic export. He expects manufacturing to begin within two years.

Other ICI energy projects include using new technologies to generate electricity from low-temperature geothermal fields, and creating synthetic, renewable diesel fuel. One cutting-edge concept is to develop materials that can store geothermal heat for release by a chemical reaction later on. "Then we could use our high-temperature [geothermal] fields to actually power up the less-blessed areas of Iceland, Greenland, and the Faroe Islands," said Ingolfur Thorbjornsson, ICI’s managing director of technological development.

Many of these projects, however, come with a high price tag. CRI’s renewable methanol, for instance, is about twice the price of conventional methanol, according to Stefansson. This year the plant will make 1.7 million liters (about 450,000 gallons), which is expected to grow to 5 million liters after a planned expansion.

Moreover, not all Icelanders favor expanding use of the nation’s energy resources.

"You can't engage in any more energy projects without destroying priceless natural treasures and natural habitats," said Halli Bjornsson, an Iceland native now living in England, whose year-old Facebook page, Protect Icelandic Nature, has nearly 10,000 followers. Iceland’s green energy is neither entirely clean nor indefinitely renewable, Bjornsson said, pointing out that hydropower dams disrupt glacial rivers and harm fish populations. And while geothermal power is, on the whole, far cleaner than fossil fuels, it does release CO2 and noxious hydrogen sulfide from underground chambers. Reykjavikers complain about rotten egg fumes from the Hellisheidi geothermal station nearly 20 miles away.

What’s more, about three-quarters of Iceland’s electricity now goes to aluminum smelters that burn carbon electrodes, giving off significant amounts of CO2. Add in the fossil fuels still used for transportation and commercial fishing, and the nation’s carbon footprint is heavy despite its renewable energy. Iceland’s 320,000 residents have the highest per capita greenhouse emissions in the Nordic region, and among the highest in Europe, although it is still well below the U.S. and Australia, according to data from the European Energy Agency and Nordic Energy Research.
CarbFix would inject CO2 water into underground basalt formations, where it would solidify as carbonates.

CarbFix, a new carbon capture and storage method being developed at the University of Iceland, could help keep some of that climate-warming gas out of the atmosphere. Siphoning CO2 from smokestacks and sequestering it is critical for holding down emissions, and may soon be required at all coal-burning power plants in the U.S. But the technology has been difficult to develop. CarbFix — a partnership involving state-owned power company Reykjavik Energy, the University of Iceland, Columbia University’s Earth Institute, and France’s Center for Scientific Research — is currently being tested at a pilot site near the Hellisheidi geothermal plant, where it uses the island’s reactive basalt to permanently trap CO2 emissions.

"What we do differently than everybody else is we basically make soda water," said Sigurdur Gislason, a professor at the University of Iceland’s Institute of Earth Sciences and chairman of the project’s scientific steering committee. The process pumps CO2 into water underground, where it dissolves and reacts with minerals in the basalt. Within a decade or two, it solidifies as carbonates. Compared to other carbon storage approaches, such as injecting compressed CO2 into sedimentary rock cavities, trapping carbon in basalt is far quicker, with virtually no chance of leakage, Gislason said.

The process requires 25 metric tons of water for every ton of CO2 — not a problem in Iceland, which receives ample amounts of rainfall. The Hellisheidi target zone contains enough basalt to store 12 million metric tons, or 200 years’ worth of the plant’s CO2 emissions at its current production level. Basalt-rich coastal areas and the entire ocean crest are also potential storage sites, Gislason said.

Next year, plant operator Reykjavik Energy will expand the project to include hydrogen sulfide as well. Eliminating both gases would allow geothermal energy production to be stepped up in Iceland and elsewhere. "If we prove that this can be done without harming the harnessing of the heat, then of course this is very positive for geothermal energy utilization," Gislason said. "If the industrial scale-up is successful, then this is something that could be done within the next five years."

While tiny Iceland is unlikely to become a global renewable energy powerhouse, the world could learn from the resourcefulness of this remote northern island. Banking on sustainable power could both shore up its sagging economy and help build a bridge to a fossil-fuel-free future.



POSTED ON 03 Oct 2013 IN Business & Innovation Climate Energy Forests Policy & Politics Science & Technology Asia Europe Europe 

COMMENTS


Good idea. Follow through and be productive to save this planet.
Posted by Brenda Caruso on 07 Oct 2013


Very interesting and deep paper, many thanks. Alternative to carbon fiber is great, for example, in the field of transportation. Not only for planes but for cars. The most energy efficient cars in the world are solar, but they are still made of carbon fibers. If the price would be lower, solar cars could be a very good solution for many countries. There are already some examples at the World Solar Challenge in the "Michelin Cruiser" category (2 to 4 seats) with large autonomy even at night, high speed, only 21 kg of battery. Examples are Solarworld GT, Bochum Suncruiser, eVe Sunswift (NSW Univ), Navitas Solar (Purdue Univ), Stella Solar (Eindhoven), Calgary Solar, Tafe Sa Solar, etc.
Posted by More efficient trasportation on 08 Oct 2013


This is confusing to me...
Posted by rj on 15 Oct 2013


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


cheryl katzABOUT THE AUTHOR
Cheryl Katz is a science writer based in the San Francisco Bay Area. A former staff reporter for the Minneapolis Star-Tribune, the Miami Herald and the Orange County Register, she is now a freelancer specializing in stories about environmental issues and climate change. Her articles have appeared in Scientific American, Environmental Health News, and The Daily Climate, among other publications. Previously for e360, Katz reported on nature-inspired flood control efforts in Holland.

 
 

RELATED ARTICLES


A Blueprint to End Paralysis
Over Global Action on Climate

The international community should stop chasing the chimera of a binding treaty to limit CO2 emissions. Instead, it should pursue an approach that encourages countries to engage in a “race to the top” in low-carbon energy solutions.
READ MORE

Why Wave Power Has Lagged
Far Behind as Energy Source

Researchers have long contended that power from ocean waves could make a major contribution as a renewable energy source. But a host of challenges, including the difficulty of designing a device to capture the energy of waves, have stymied efforts to generate electricity from the sea.
READ MORE

UN Panel Looks to Renewables
As the Key to Stabilizing Climate

In its latest report, the UN's Intergovernmental Panel on Climate Change makes a strong case for a sharp increase in low-carbon energy production, especially solar and wind, and provides hope that this transformation can occur in time to hold off the worst impacts of global warming.
READ MORE

Indian Microgrids Aim to
Bring Millions Out of Darkness

Powered by solar panels and biomass, microgrids are spreading slowly across India, where 300 million people live without electricity. But can these off-grid technologies be scaled-up to bring low-carbon power to tens of millions of people?
READ MORE

For Utility-Scale Solar Industry,
Key Questions About the Future

Large-scale solar projects are enjoying steady growth in California and the southwestern United States. But will shifting government incentives and mandates slow the expansion of this key part of the solar energy industry?
READ MORE

 

MORE IN Reports


How Norway and Russia Made
A Cod Fishery Live and Thrive

by john waldman
The prime cod fishing grounds of North America have been depleted or wiped out by overfishing and poor management. But in Arctic waters, Norway and Russia are working cooperatively to sustain a highly productive — and profitable — cod fishery.
READ MORE

A New Frontier for Fracking:
Drilling Near the Arctic Circle

by ed struzik
Hydraulic fracturing is about to move into the Canadian Arctic, with companies exploring the region's rich shale oil deposits. But many indigenous people and conservationists have serious concerns about the impact of fracking in more fragile northern environments.
READ MORE

Africa’s Vultures Threatened
By An Assault on All Fronts

by madeline bodin
Vultures are being killed on an unprecedented scale across Africa, with the latest slaughter perpetrated by elephant poachers who poison the scavenging birds so they won’t give away the location of their activities.
READ MORE

As Small Hydropower Expands,
So Does Caution on Its Impacts

by dave levitan
Small hydropower projects have the potential to bring electricity to millions of people now living off the grid. But experts warn that planners must carefully consider the cumulative effects of constructing too many small dams in a single watershed.
READ MORE

Why Restoring Wetlands
Is More Critical Than Ever

by bruce stutz
Along the Delaware River estuary, efforts are underway to restore wetlands lost due to centuries of human activity. With sea levels rising, coastal communities there and and elsewhere in the U.S. and Europe are realizing the value of wetlands as important buffers against flooding and tidal surges.
READ MORE

Primate Rights vs Research:
Battle in Colombian Rainforest

by chris kraul
A Colombian conservationist has been locked in a contentious legal fight against a leading researcher who uses wild monkeys in his search for a malaria vaccine. A recent court decision that banned the practice is seen as a victory in efforts to restrict the use of monkeys in medical research.
READ MORE

Scientists Look for Causes of
Baffling Die-Off of Sea Stars

by eric wagner
Sea stars on both coasts of North America are dying en masse from a disease that kills them in a matter of days. Researchers are looking at various pathogens that may be behind what is known as sea star wasting syndrome, but they suspect that a key contributing factor is warming ocean waters.
READ MORE

Loss of Snowpack and Glaciers
In Rockies Poses Water Threat

by ed struzik
From the Columbia River basin in the U.S. to the Prairie Provinces of Canada, scientists and policy makers are confronting a future in which the loss of snow and ice in the Rocky Mountains could imperil water supplies for agriculture, cities and towns, and hydropower production.
READ MORE

On Front Lines of Recycling,
Turning Food Waste into Biogas

by rachel cernansky
An increasing number of sewage treatment plants in the U.S. and Europe are processing food waste in anaerobic biodigesters, keeping more garbage out of landfills, reducing methane emissions, and producing energy to defray their operating costs.
READ MORE

Can Waterless Dyeing Processes
Clean Up the Clothing Industry?

by lydia heida
One of the world’s most polluting industries is the textile-dyeing sector, which in China and other Asian nations releases trillions of liters of chemically tainted wastewater. But new waterless dyeing technologies, if adopted on a large scale, could sharply cut pollution from the clothing industry.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 PHOTO GALLERY

“Peter
Photographer Peter Essick documents the swift changes wrought by global warming in Antarctica, Greenland, and other far-flung places.
View the gallery.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

OF INTEREST



Yale