10 Oct 2013: Report

In Japan, Captive Breeding
May Help Save the Wild Eel

As eel populations plummet worldwide, Japanese scientists are racing to solve a major challenge for aquaculture — how to replicate the life cycle of eels in captivity and commercially produce a fish that is a prized delicacy on Asian dinner tables.

by winifred bird

Hitoshi Imaizumi pushes back the silver quilting of a tent at the National Research Institute of Aquaculture in Shibushi, southern Japan, steps into the pitch-black interior, and switches on a flashlight. A tall, tube-shaped aquarium emerges from the darkness. Inside, slivers of reflected light flicker through the water: Japanese eel larvae, hatched just six days earlier. With huge black eyes set in skull-like heads and flat, transparent bodies, they look like tiny visitors from an alien world — which, in a sense, they are.

“This is something you’d normally only see out in the middle of the ocean,” says Imaizumi, an aquaculture researcher at the center.

Japanese eel larva
Wikimedia Commons
Fishermen capture two-inch-long glass eels in coastal areas.
Japan is the world’s top consumer of eels, but while most of what’s grilled, glazed with sweet-salty sauce, and served up on rice here comes from fish farms, none of those farms hatch their eels from eggs. Instead, they rely on wild young caught in rivers and coastal waters worldwide as two-inch-long “glass eels.” Until very recently scientists knew little about the life of the animal in the open ocean, where sexual maturation and spawning take place.

Now, however, many wild eel populations in Asia, Europe, North America, and elsewhere are threatened or on the verge of extinction. To prevent a piece of Japan’s culinary heritage (and economy) from disappearing along
At least 70 percent of global eel catches end up in Japan, reports Greenpeace.
with them, researchers are racing to close the aquaculture loop by breeding eels in captivity. Imaizumi and his colleagues at the Shibushi laboratory — part of the government-funded Fisheries Research Agency — are among the scientists at the forefront of the ambitious project. In 2010 they pulled together decades of research to successfully raise two generations of eels in captivity for the first time ever.

Their achievement opened the possibility of an aquaculture industry that neither depends on nor decimates wild stocks, but it also left many questions unanswered. Can researchers design methods that work on a commercial scale? If so, would the resulting closed-loop eel aquaculture industry be environmentally sustainable? Could it help bring back wild populations?

The answers matter not only for Japanese eels (Anguilla japonica), which inhabit rivers, lakes, and estuaries from the Philippines to Japan, but also for eel species worldwide. According to a recent analysis by Greenpeace, at least 70 percent of global eel catches end up in Japan. Last year about half were raised domestically from the glass eel stage and the remainder imported full-grown from fish farms in China and Taiwan.

Many countries export glass eels to Asia, where prices are extremely high. In the U.S., fishermen in Maine were selling glass eels last spring for $2,000 a pound, with some earning more than $100,000 during the 2-
Eel populations have been precipitously declining globally for decades.
month spring season. The glass eels are netted in rivers and estuaries and flown to Asia, where they are raised in concrete pens until they are about a foot long – just the right size to fit into a traditional serving dish.

Eel populations have been precipitously declining globally for decades because of dams, pollution, and other environmental threats. Now, biologists and regulators in Europe, North America, and Japan are growing increasingly concerned about booming glass eel fisheries, as the removal of so many juveniles will further depress populations. The European Union is requiring member countries to draw up eel management plans that limit glass eel fisheries. U.S. officials are weighing tighter controls on the glass eel fishery as populations of adult American eels (Anguilla rostrata) plunge to historic lows. In Maine, catches of glass eels quadrupled from 5,200 pounds in 2009 to 20,700 pounds in 2012.

Fish farmers in Japan still rely most heavily on domestic and imported Japanese eels, but that may soon change. Glass eel catches in Japan have plummeted to less than five percent of their peak in the 1960s, and this February the Environment Ministry listed Japanese eels as endangered. The International Union for Conservation of Nature (IUCN) is currently assessing stocks region-wide. If it decides the species is endangered throughout its range, trade restrictions would become much more likely. Greenpeace Japan oceans campaigner Wakao Hanaoka says that could put eels in other parts of the world at risk.

“Supermarkets are looking for alternatives in places like Tasmania, Indonesia, Australia, and the Philippines,” Hanaoka says. “But if these species are taken [in these places] without proper fishery management, the same thing will happen to them.”

Full-cycle aquaculture offers an enticing alternative. Japanese fish farmers have been managing the middle part of the eel life cycle since the late 1800s. The industry is not necessarily sustainable — eels are fed fishmeal and kept in fossil-fuel-heated greenhouses — but it’s efficient. Satoshi Inoue raises a quarter million eels a year in an isolated valley near Imaizumi’s research lab and says that less than one percent die during their seven- to ten-month stint in his concrete pools, even though he uses few chemicals or antibiotics. Replicating the beginning and end of their life cycle remains difficult, however.

The key problems are common to many kinds of fish, says James Diana, a scholar of sustainable aquaculture at the University of Michigan.

“Most marine-spawning species produce very small eggs that drift around in the plankton and suffer 99.999 percent morality before they even reach the end of the first year,” says Diana. “You’re fighting that whole life history in aquaculture. Freshwater-spawning species tend to have bigger eggs,
The challenge in captive breeding is getting eels through bottlenecks in their life cycles.
more robust young, and lower mortality, and they’re the ones we’ve been successful with.”

The challenge, he explains, is getting fish through a number of “bottlenecks” in their life cycle. Sexual maturation, for instance, is triggered by a complex set of environmental cues including light levels, temperature, and salinity. Meeting the nutritional needs of larval fish is tricky too, because their diet — made up primarily of plankton — is completely different than adults'.

Despite these difficulties, full-cycle aquaculture does exist for marine-spawning species like sea bass and flounder. Japanese researchers have also closed the life-cycle loop for Pacific bluefin tuna, but not yet in ways efficient enough for commercial production.

In the case of eels, the first bottleneck scientists faced was spawning.

“No matter how long you keep a juvenile eel in captivity, it will not mature spontaneously,” explains Imaizumi. To make matters worse, most farmed eels turn out to be male, even though the gender balance in the wild is equal. Mimicking the natural conditions that determine gender and trigger spawning has so far proven impossible.

Instead, scientists have developed a set of hormone treatments as rigorous as anything a human couple might undergo at a fertility clinic — with a sex change thrown in. Imaizumi spends months preparing his eels to breed before placing them in breeding tanks at just the right moment. The result is a fairly reliable supply of fertilized eggs. However, stressing the animals with repeated shots and giving them hormones derived from other species lowers the number of healthy larvae obtained. Imaizumi is experimenting with genetically engineered hormones to see if the results are better.

Keeping the larva (called leptocephali) alive until they metamorphose into glass eels is even more difficult. In nature the process takes 110 to 160 days, but in Imaizumi’s lab it takes between 250 and 300 days on average, with survival rates below ten percent.

“It’s a big challenge because leptocephali are such strange larva,” says Michael Miller, a biologist at Tokyo University, where much of the groundbreaking research on Japanese eels has taken place over the past half-century. “Their bodies are filled with transparent gelatinous material that functions to store energy, overlain with only a thin layer of muscle
Scientists have developed hormone treatments as rigorous as those in human fertility clinics.
tissue. And their organs are reduced in size, so they are almost completely transparent.”

In 2009, Miller’s research team leader Katsumi Tsukamoto pinpointed the spawning site for Japanese eels, near the Mariana Trench 1,000 miles southeast of Tokyo — a discovery that has deepened understanding of their spawning ecology and life as larvae.

“[Leptocephali] don’t feed on zooplankton like normal fish larvae,” Miller says. “Instead they feed on marine snow, which is composed of materials released by phytoplankton that mix with other free material in the ocean and are colonized by microorganisms. It’s very difficult to reproduce for aquaculture.”

The only workable alternative researchers have discovered so far is a thick, pinkish paste made primarily of shark eggs, soy protein, and vitamins. Light-wary leptocephali are kept in darkened rooms; when the paste is squeezed onto the bottom of aquariums and the lights turned on, they instinctively swim downward and bump into their food. The method worked well enough for Imaizumi’s group to achieve its historic 2010 results, but the feed dirties the tanks and is too inefficient for commercial use. Shark eggs aren’t a long-term solution either: Spiny dogfish, the shark species leptocephali prefer, is endangered in the northwestern Pacific Ocean.

Researchers throughout Japan are working to overcome these problems so that glass eels can be produced cheaply in huge batches. But even if they succeed, it’s hard to predict how an industry-wide shift from fished to farmed glass eels would affect wild stocks. Matthew Gollock, chair of the IUCN team currently assessing Japanese eels, says overfishing is just one of many problems that must be addressed.

“We believe factors such as changing ocean currents, disease, pollutants, fisheries, barriers to migration [such as dams] and freshwater habitat loss

MORE FROM YALE e360

New Initiatives to Clean Up
The Global Aquarium Trade

yellow tang
Conservationists are working to improve the home aquarium market by ending destructive practices and encouraging aquaculture.
READ MORE
are all having an effect on Anguillid eels globally,” says Gollock. “Halting one of those in isolation would not totally solve the problem.”

In Shibushi, eel farmer Inoue says he would jump at the chance to buy glass eels from a hatchery rather than a fishery. Since he started his business three years ago their price has skyrocketed to about five dollars each, cutting his profit margin to the bone.

“If they’re able to raise glass eels, the supply will stabilize and so will the price,” he says. But he believes a darker scenario is much more likely: Glass eel imports from East Asia will be banned before aquaculture technology advances, grilled eel will become a rare luxury item, and fish farmers fight one another to survive. If that happens, he intends to be among the winners.

“China has a huge glass eel fishing industry,” he says. “It’s not going to disappear overnight if Japanese eels are red-listed. They’ll sell on the black market.”

And would he consider buying from that black market?

“Definitely.”



POSTED ON 10 Oct 2013 IN Business & Innovation Oceans Policy & Politics Pollution & Health Sustainability Asia North America 

COMMENTS


Reading in Seafood Source, "Maine's lucrative glass eel fishery will be allowed to remain open next year as long as state officials devise a plan to cut its 2014 catch by at least 25 percent, regulators agreed Wednesday." (Oct. 30, 2013)

As Europe and Canada have already closed their glass eel industries (2012), demand is squeezing supplies to the point of extinction. I fear for what this manipulation of nature will cause. Sex-changed, hormone-injected eels that face disease associated with larval-rearing, along with morphological abnormalities (as cited by research by Masuda et al, 2012) support the fears discussed in this article, that science will not win in this race against time and human greed.

Thank you for the excellent article.
Posted by John on 01 Nov 2013


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


winifred birdABOUT THE AUTHOR
Winifred Bird is a freelance journalist living in Japan. She writes about the environment for the Japan Times, Environmental Health Perspectives, Christian Science Monitor and other publications. In previous articles for Yale Environment 360, she wrote about the challenge of promoting sustainable seafood in Japan and reported on possible ecological consequences of Japan's post-tsunami coastal reconstruction.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


Unsustainable Seafood: A New
Crackdown on Illegal Fishing

A recent study shows that a surprisingly large amount of the seafood sold in U.S. markets is caught illegally. In a series of actions over the last few months, governments and international regulators have started taking aim at stopping this illicit trade in contraband fish.
READ MORE

Wendell Berry: A Strong Voice
For Local Farming and the Land

For six decades, writer Wendell Berry has spoken out in defense of local agriculture, rural communities, and the importance of caring for the land. In an interview with Yale Environment 360, he talks about his Kentucky farm, his activism, and why he remains hopeful for the future.
READ MORE

Amid Elephant Slaughter,
Ivory Trade in U.S. Continues

In the last year, the U.S. government and nonprofits have put a spotlight on the illegal poaching of Africa’s elephants and Asia’s insatiable demand for ivory. But the media coverage has ignored a dirty secret: The U.S. has its own large ivory trade that has not been adequately regulated.
READ MORE

Animal ‘Personhood’: Muddled
Alternative to Real Protection

A new strategy of granting animals “personhood” under the law is being advanced by some in academia and the animal rights movement. But this approach fails to address the fundamental truth that all species have an equal right to their own existence.
READ MORE

The Case Against De-Extinction:
It’s a Fascinating but Dumb Idea

Even if reviving extinct species is practical, it’s an awful idea. It would take resources away from saving endangered species and their habitats and would divert us from the critical work needed to protect the planet.
READ MORE

 

MORE IN Reports


Unsustainable Seafood: A New
Crackdown on Illegal Fishing

by richard conniff
A recent study shows that a surprisingly large amount of the seafood sold in U.S. markets is caught illegally. In a series of actions over the last few months, governments and international regulators have started taking aim at stopping this illicit trade in contraband fish.
READ MORE

A Public Relations Drive to
Stop Illegal Rhino Horn Trade

by mike ives
Conservation groups are mounting campaigns to persuade Vietnamese consumers that buying rhino horn is decidedly uncool. But such efforts are likely to succeed only as part of a broader initiative to crack down on an illicit trade that is decimating African rhino populations.
READ MORE

On Fracking Front, A Push
To Reduce Leaks of Methane

by roger real drouin
Scientists, engineers, and government regulators are increasingly turning their attention to solving one of the chief environmental problems associated with fracking for natural gas and oil – significant leaks of methane, a potent greenhouse gas.
READ MORE

Scientists Focus on Polar Waters
As Threat of Acidification Grows

by jo chandler
A sophisticated and challenging experiment in Antarctica is the latest effort to study ocean acidification in the polar regions, where frigid waters are expected to feel most acutely the ecological impacts of acidic conditions not seen in millions of years.
READ MORE

On Ravaged Tar Sands Lands,
Big Challenges for Reclamation

by ed struzik
The mining of Canada’s tar sands has destroyed large areas of sensitive wetlands in Alberta. Oil sands companies have vowed to reclaim this land, but little restoration has occurred so far and many scientists say it is virtually impossible to rebuild these complex ecosystems.
READ MORE

A New Leaf in the Rainforest:
Longtime Villain Vows Reform

by rhett butler
Few companies have done as much damage to the world’s tropical forests as Asia Pulp & Paper. But under intense pressure from its customers and conservation groups, APP has embarked on a series of changes that could significantly reduce deforestation in Indonesia and serve as a model for forestry reform.
READ MORE

In a Host of Small Sources,
Scientists See Energy Windfall

by cheryl katz
The emerging field of “energy scavenging” is drawing on a wide array of untapped energy sources­ — including radio waves, vibrations created by moving objects, and waste heat from computers or car exhaust systems — to generate electricity and boost efficiency.
READ MORE

Life on Mekong Faces Threats
As Major Dams Begin to Rise

by joshua zaffos
With a massive dam under construction in Laos and other dams on the way, the Mekong River is facing a wave of hydroelectric projects that could profoundly alter the river’s ecology and disrupt the food supplies of millions of people in Southeast Asia.
READ MORE

As Fracking Booms, Growing
Concerns About Wastewater

by roger real drouin
With hydraulic fracturing for oil and gas continuing to proliferate across the U.S., scientists and environmental activists are raising questions about whether millions of gallons of contaminated drilling fluids could be threatening water supplies and human health.
READ MORE

In Developing World, A Push to
Bring E-Waste Out of Shadows

by mike ives
For decades, hazardous electronic waste from around the world has been processed in unsafe backyard recycling operations in Asia and Africa. Now, a small but growing movement is seeking to provide these informal collectors with incentives to sell e-waste to advanced recycling facilities.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

e360 video contest
Yale Environment 360 is sponsoring a contest to honor the best environmental videos.
Find more contest information.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

 

OF INTEREST



Yale