10 Oct 2013: Report

In Japan, Captive Breeding
May Help Save the Wild Eel

As eel populations plummet worldwide, Japanese scientists are racing to solve a major challenge for aquaculture — how to replicate the life cycle of eels in captivity and commercially produce a fish that is a prized delicacy on Asian dinner tables.

by winifred bird

Hitoshi Imaizumi pushes back the silver quilting of a tent at the National Research Institute of Aquaculture in Shibushi, southern Japan, steps into the pitch-black interior, and switches on a flashlight. A tall, tube-shaped aquarium emerges from the darkness. Inside, slivers of reflected light flicker through the water: Japanese eel larvae, hatched just six days earlier. With huge black eyes set in skull-like heads and flat, transparent bodies, they look like tiny visitors from an alien world — which, in a sense, they are.

“This is something you’d normally only see out in the middle of the ocean,” says Imaizumi, an aquaculture researcher at the center.

Japanese eel larva
Wikimedia Commons
Fishermen capture two-inch-long glass eels in coastal areas.
Japan is the world’s top consumer of eels, but while most of what’s grilled, glazed with sweet-salty sauce, and served up on rice here comes from fish farms, none of those farms hatch their eels from eggs. Instead, they rely on wild young caught in rivers and coastal waters worldwide as two-inch-long “glass eels.” Until very recently scientists knew little about the life of the animal in the open ocean, where sexual maturation and spawning take place.

Now, however, many wild eel populations in Asia, Europe, North America, and elsewhere are threatened or on the verge of extinction. To prevent a piece of Japan’s culinary heritage (and economy) from disappearing along
At least 70 percent of global eel catches end up in Japan, reports Greenpeace.
with them, researchers are racing to close the aquaculture loop by breeding eels in captivity. Imaizumi and his colleagues at the Shibushi laboratory — part of the government-funded Fisheries Research Agency — are among the scientists at the forefront of the ambitious project. In 2010 they pulled together decades of research to successfully raise two generations of eels in captivity for the first time ever.

Their achievement opened the possibility of an aquaculture industry that neither depends on nor decimates wild stocks, but it also left many questions unanswered. Can researchers design methods that work on a commercial scale? If so, would the resulting closed-loop eel aquaculture industry be environmentally sustainable? Could it help bring back wild populations?

The answers matter not only for Japanese eels (Anguilla japonica), which inhabit rivers, lakes, and estuaries from the Philippines to Japan, but also for eel species worldwide. According to a recent analysis by Greenpeace, at least 70 percent of global eel catches end up in Japan. Last year about half were raised domestically from the glass eel stage and the remainder imported full-grown from fish farms in China and Taiwan.

Many countries export glass eels to Asia, where prices are extremely high. In the U.S., fishermen in Maine were selling glass eels last spring for $2,000 a pound, with some earning more than $100,000 during the 2-
Eel populations have been precipitously declining globally for decades.
month spring season. The glass eels are netted in rivers and estuaries and flown to Asia, where they are raised in concrete pens until they are about a foot long – just the right size to fit into a traditional serving dish.

Eel populations have been precipitously declining globally for decades because of dams, pollution, and other environmental threats. Now, biologists and regulators in Europe, North America, and Japan are growing increasingly concerned about booming glass eel fisheries, as the removal of so many juveniles will further depress populations. The European Union is requiring member countries to draw up eel management plans that limit glass eel fisheries. U.S. officials are weighing tighter controls on the glass eel fishery as populations of adult American eels (Anguilla rostrata) plunge to historic lows. In Maine, catches of glass eels quadrupled from 5,200 pounds in 2009 to 20,700 pounds in 2012.

Fish farmers in Japan still rely most heavily on domestic and imported Japanese eels, but that may soon change. Glass eel catches in Japan have plummeted to less than five percent of their peak in the 1960s, and this February the Environment Ministry listed Japanese eels as endangered. The International Union for Conservation of Nature (IUCN) is currently assessing stocks region-wide. If it decides the species is endangered throughout its range, trade restrictions would become much more likely. Greenpeace Japan oceans campaigner Wakao Hanaoka says that could put eels in other parts of the world at risk.

“Supermarkets are looking for alternatives in places like Tasmania, Indonesia, Australia, and the Philippines,” Hanaoka says. “But if these species are taken [in these places] without proper fishery management, the same thing will happen to them.”

Full-cycle aquaculture offers an enticing alternative. Japanese fish farmers have been managing the middle part of the eel life cycle since the late 1800s. The industry is not necessarily sustainable — eels are fed fishmeal and kept in fossil-fuel-heated greenhouses — but it’s efficient. Satoshi Inoue raises a quarter million eels a year in an isolated valley near Imaizumi’s research lab and says that less than one percent die during their seven- to ten-month stint in his concrete pools, even though he uses few chemicals or antibiotics. Replicating the beginning and end of their life cycle remains difficult, however.

The key problems are common to many kinds of fish, says James Diana, a scholar of sustainable aquaculture at the University of Michigan.

“Most marine-spawning species produce very small eggs that drift around in the plankton and suffer 99.999 percent morality before they even reach the end of the first year,” says Diana. “You’re fighting that whole life history in aquaculture. Freshwater-spawning species tend to have bigger eggs,
The challenge in captive breeding is getting eels through bottlenecks in their life cycles.
more robust young, and lower mortality, and they’re the ones we’ve been successful with.”

The challenge, he explains, is getting fish through a number of “bottlenecks” in their life cycle. Sexual maturation, for instance, is triggered by a complex set of environmental cues including light levels, temperature, and salinity. Meeting the nutritional needs of larval fish is tricky too, because their diet — made up primarily of plankton — is completely different than adults'.

Despite these difficulties, full-cycle aquaculture does exist for marine-spawning species like sea bass and flounder. Japanese researchers have also closed the life-cycle loop for Pacific bluefin tuna, but not yet in ways efficient enough for commercial production.

In the case of eels, the first bottleneck scientists faced was spawning.

“No matter how long you keep a juvenile eel in captivity, it will not mature spontaneously,” explains Imaizumi. To make matters worse, most farmed eels turn out to be male, even though the gender balance in the wild is equal. Mimicking the natural conditions that determine gender and trigger spawning has so far proven impossible.

Instead, scientists have developed a set of hormone treatments as rigorous as anything a human couple might undergo at a fertility clinic — with a sex change thrown in. Imaizumi spends months preparing his eels to breed before placing them in breeding tanks at just the right moment. The result is a fairly reliable supply of fertilized eggs. However, stressing the animals with repeated shots and giving them hormones derived from other species lowers the number of healthy larvae obtained. Imaizumi is experimenting with genetically engineered hormones to see if the results are better.

Keeping the larva (called leptocephali) alive until they metamorphose into glass eels is even more difficult. In nature the process takes 110 to 160 days, but in Imaizumi’s lab it takes between 250 and 300 days on average, with survival rates below ten percent.

“It’s a big challenge because leptocephali are such strange larva,” says Michael Miller, a biologist at Tokyo University, where much of the groundbreaking research on Japanese eels has taken place over the past half-century. “Their bodies are filled with transparent gelatinous material that functions to store energy, overlain with only a thin layer of muscle
Scientists have developed hormone treatments as rigorous as those in human fertility clinics.
tissue. And their organs are reduced in size, so they are almost completely transparent.”

In 2009, Miller’s research team leader Katsumi Tsukamoto pinpointed the spawning site for Japanese eels, near the Mariana Trench 1,000 miles southeast of Tokyo — a discovery that has deepened understanding of their spawning ecology and life as larvae.

“[Leptocephali] don’t feed on zooplankton like normal fish larvae,” Miller says. “Instead they feed on marine snow, which is composed of materials released by phytoplankton that mix with other free material in the ocean and are colonized by microorganisms. It’s very difficult to reproduce for aquaculture.”

The only workable alternative researchers have discovered so far is a thick, pinkish paste made primarily of shark eggs, soy protein, and vitamins. Light-wary leptocephali are kept in darkened rooms; when the paste is squeezed onto the bottom of aquariums and the lights turned on, they instinctively swim downward and bump into their food. The method worked well enough for Imaizumi’s group to achieve its historic 2010 results, but the feed dirties the tanks and is too inefficient for commercial use. Shark eggs aren’t a long-term solution either: Spiny dogfish, the shark species leptocephali prefer, is endangered in the northwestern Pacific Ocean.

Researchers throughout Japan are working to overcome these problems so that glass eels can be produced cheaply in huge batches. But even if they succeed, it’s hard to predict how an industry-wide shift from fished to farmed glass eels would affect wild stocks. Matthew Gollock, chair of the IUCN team currently assessing Japanese eels, says overfishing is just one of many problems that must be addressed.

“We believe factors such as changing ocean currents, disease, pollutants, fisheries, barriers to migration [such as dams] and freshwater habitat loss

MORE FROM YALE e360

New Initiatives to Clean Up
The Global Aquarium Trade

yellow tang
Conservationists are working to improve the home aquarium market by ending destructive practices and encouraging aquaculture.
READ MORE
are all having an effect on Anguillid eels globally,” says Gollock. “Halting one of those in isolation would not totally solve the problem.”

In Shibushi, eel farmer Inoue says he would jump at the chance to buy glass eels from a hatchery rather than a fishery. Since he started his business three years ago their price has skyrocketed to about five dollars each, cutting his profit margin to the bone.

“If they’re able to raise glass eels, the supply will stabilize and so will the price,” he says. But he believes a darker scenario is much more likely: Glass eel imports from East Asia will be banned before aquaculture technology advances, grilled eel will become a rare luxury item, and fish farmers fight one another to survive. If that happens, he intends to be among the winners.

“China has a huge glass eel fishing industry,” he says. “It’s not going to disappear overnight if Japanese eels are red-listed. They’ll sell on the black market.”

And would he consider buying from that black market?

“Definitely.”



POSTED ON 10 Oct 2013 IN Business & Innovation Oceans Policy & Politics Pollution & Health Sustainability Asia North America 

COMMENTS


Reading in Seafood Source, "Maine's lucrative glass eel fishery will be allowed to remain open next year as long as state officials devise a plan to cut its 2014 catch by at least 25 percent, regulators agreed Wednesday." (Oct. 30, 2013)

As Europe and Canada have already closed their glass eel industries (2012), demand is squeezing supplies to the point of extinction. I fear for what this manipulation of nature will cause. Sex-changed, hormone-injected eels that face disease associated with larval-rearing, along with morphological abnormalities (as cited by research by Masuda et al, 2012) support the fears discussed in this article, that science will not win in this race against time and human greed.

Thank you for the excellent article.
Posted by John on 01 Nov 2013


I know how to reproduce eels in captivity. It is in the plankton bloom. A person needs to create the environment needed. The eels reproduce in whale manure. I know how to create the same red manure of the baleen whales with horse manure. It is in the Zooxanthellae. If one of the reproduction centers contact me I can send a sample of the Zooxanthellae. I will give it free on one condition, Japan stops whaling. Promise that and I will give you all the eel meat you want.

Rednowdik
Posted by Todd Rednowdik on 20 Jul 2014


I am going to try to start to raise eels. Anyway someone
can help me get started?
Posted by Mitchell on 07 Mar 2015


Mitchell and anyone else who is interested in breeding eels, I would like to do this as well. If you are serious then let's get in touch to see what options are available to us.
Posted by Brock on 30 Jun 2015


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


winifred birdABOUT THE AUTHOR
Winifred Bird is a freelance journalist living in Japan. She writes about the environment for the Japan Times, Environmental Health Perspectives, Christian Science Monitor and other publications. In previous articles for Yale Environment 360, she wrote about the challenge of promoting sustainable seafood in Japan and reported on possible ecological consequences of Japan's post-tsunami coastal reconstruction.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


From Mass Coral Bleaching,
A Scientist Looks for Lessons

For climate scientist Kim Cobb, this year’s massive bleaching of coral reefs is providing sobering insights into the impacts of global warming. Yale Environment 360 talked with Cobb about the bleaching events and the push to make reefs more resilient to rising temperatures.
READ MORE

How Satellites and Big Data
Can Help to Save the Oceans

With new marine protected areas and an emerging U.N. treaty, global ocean conservation efforts are on the verge of a major advance. But to enforce these ambitious initiatives, new satellite-based technologies and newly available online data must be harnessed.
READ MORE

In Mexico, Fish Poachers Push
Endangered Porpoises to Brink

China’s lucrative black market for fish parts is threatening the vaquita, the world’s most endangered marine mammal. The porpoises, who live only in the Gulf of California, are getting caught up as bycatch in illegal gill nets and killed.
READ MORE

How Forest Loss Is Leading
To a Rise in Human Disease

A growing body of scientific evidence shows that the felling of tropical forests creates optimal conditions for the spread of mosquito-borne scourges, including malaria and dengue. Primates and other animals are also spreading disease from cleared forests to people.
READ MORE

El Niño and Climate Change:
Wild Weather May Get Wilder

This year’s El Niño phenomenon is spawning extreme weather around the planet. Now scientists are working to understand if global warming will lead to more powerful El Niños that will make droughts, floods, snowstorms, and hurricanes more intense.
READ MORE

 

MORE IN Reports


Can Uber-Style Buses Help
Relieve India's Air Pollution?

by jason overdorf
India’s megacities have some the deadliest air and worst traffic congestion in the world. But Indian startups are now launching initiatives that link smart-phone apps and private shuttle buses and could help keep cars and other motorized vehicles off the roads.
READ MORE

Trouble in Paradise: A Blight
Threatens Key Hawaiian Tree

by richard schiffman
The ʻohiʻa is Hawaii’s iconic tree, a keystone species that maintains healthy watersheds and provides habitat for numerous endangered birds. But a virulent fungal disease, possibly related to a warmer, drier climate, is now felling the island’s cherished 'ohi'a forests.
READ MORE

Climate Change Adds Urgency
To Push to Save World’s Seeds

by virginia gewin
In the face of rising temperatures and worsening drought, the world’s repositories of agricultural seeds may hold the key to growing food under increasingly harsh conditions. But keeping these gene banks safe and viable is a complicated and expensive challenge.
READ MORE

As World Warms, How Do We
Decide When a Plant is Native?

by janet marinelli
The fate of a tree planted at poet Emily Dickinson's home raises questions about whether gardeners can — or should — play a role in helping plant species migrate in the face of rising temperatures and swiftly changing botanical zones.
READ MORE

With New Tools, A Focus
On Urban Methane Leaks

by judith lewis mernit
Until recently, little was known about the extent of methane leaking from urban gas distribution pipes and its impact on global warming. But recent advances in detecting this potent greenhouse gas are pushing U.S. states to begin addressing this long-neglected problem.
READ MORE

Is Climate Change Putting
World's Microbiomes at Risk?

by jim robbins
Researchers are only beginning to understand the complexities of the microbes in the earth’s soil and the role they play in fostering healthy ecosystems. Now, climate change is threatening to disrupt these microbes and the key functions they provide.
READ MORE

As Electric Cars Stall, A Move
To Greener Trucks and Buses

by cheryl katz
Low gasoline prices and continuing performance issues have slowed the growth of electric car sales. But that has not stymied progress in electrifying larger vehicles, including garbage trucks, city buses, and medium-sized trucks used by freight giants like FedEx.
READ MORE

Food Insecurity: Arctic Heat
Is Threatening Indigenous Life

by ed struzik
Subsistence hunters in the Arctic have long taken to the sea ice to hunt seals, whales, and polar bears. But now, as the ice disappears and soaring temperatures alter the life cycles and abundance of their prey, a growing number of indigenous communities are facing food shortages.
READ MORE

The Carbon Counters: Tracking
Emissions in a Post-Paris World

by nicola jones
In the wake of the Paris climate agreement, developing countries find themselves in need of analysts capable of monitoring their emissions. It’s a complex task, but organizations are stepping in with online courses to train these new green accountants.
READ MORE

Can Data-Driven Agriculture
Help Feed a Hungry World?

by john roach
Agribusinesses are increasingly using computer databases to enable farmers to grow crops more efficiently and with less environmental impact. Experts hope this data, detailing everything from water use to crop yields, can also help the developing world grow more food.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

“Battle
The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.

e360 VIDEO

“Alaska
A 2015 Yale e360 Video Contest winner captures stunning images of wild salmon runs in Alaska.
Watch the video.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.

e360 SPECIAL REPORT

“Tainted
A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

OF INTEREST



Yale