27 Oct 2016: Report

On College Campuses, Signs of
Progress on Renewable Energy

U.S. colleges and universities are increasingly deploying solar arrays and other forms of renewable energy. Yet most institutions have a long way to go if they are to meet their goal of being carbon neutral in the coming decades.

by ben goldfarb

The soul of Arizona State University is Memorial Union, a hulking brick-and-glass community center that opens onto a sprawling pedestrian mall. Although the building sits at the heart of campus, its outdoor plaza was once virtually uninhabitable for four months each year, when summer temperatures in scorching Tempe often hover over 100 degrees. So in 2014, the university – Arizona’s leading energy consumer – completed construction on a PowerParasol, a 25-foot-tall shade canopy composed of 1,380 photovoltaic solar panels capable of producing 397 kilowatts of electricity.

“These solar systems have transformed the area,” says Gerry Darosa, director of energy innovations at Arizona State.

Robin Kiyutelluk/ASU
Solar panels help cool down Arizona State's Memorial Union plaza during hot months.
“You’ll see people singing, talking, eating — it’s become a vibrant social gathering place.”

The Memorial Union’s PowerParasol is just one installation within Arizona State’s expansive network of 88 solar systems, which now produces 41,000 megawatt hours annually — enough to power nearly 4,000 average U.S. homes. Arizona State’s solar capacity stands second among American universities, behind only rival University of Arizona, and it’s about to grow further: The state’s largest electric utility is building an off-site facility that will provide the campus with another 65,000 megawatt hours per year, knocking 10 percent from its carbon footprint. That will go a long way toward helping Arizona State create a carbon-neutral campus by 2025, a target it aims to reach not only by expanding its solar capacity, but also by improving its refrigeration and waste management practices, making its buildings more efficient, and purchasing carbon offsets.

The university’s reliance on solar power is a major reason why the Sun Devils have risen to sixth place in the Sierra Club’s 2016 campus sustainability rankings, which score schools on their commitment to renewable energy and greenhouse gas reduction along with other factors like purchasing local food and composting waste. “Solar is pretty much ubiquitous around here — it’s hard to walk outside somewhere and not see panels,” Darosa says.

Not every campus can exploit the relentless Arizona sun, of course; nonetheless, university sustainability is moving further into the mainstream with every passing year. In 2007, the first installment of the Sierra Club’s rankings was dominated by small private colleges known for their progressive bent, like Oberlin in Ohio and Vermont’s Middlebury. Only two of the top 10 schools — the University of California system and Pennsylvania State University — were public institutions. By contrast, half of this year’s top 10 is composed of public schools, including major institutions like Arizona State and the University of Connecticut. The Climate Leadership Network, a coalition of more than 650 schools that have vowed to achieve carbon neutrality on self-determined timetables, counts institutions such as Montana State, Mississippi State, and the University of Washington among its members.

The trend’s ramifications are potentially transformative. “Nationwide, there are around 20 million students on university campuses, and 5 million faculty and staff,” says Dovev Levine, assistant dean of the Graduate School at the University of New Hampshire, which in 2009 began piping in processed methane from a nearby landfill to run its cogeneration plant. “That’s not an insignificant slice of the American public.”
Many experts say universities could be doing far more to adopt renewable energy technologies.


Yet despite recent advances at places like Arizona State, many experts say that universities could be doing far more to adopt renewable energy technologies. According to an analysis conducted by the University of New Hampshire and Sightlines, a facilities management firm, total campus emissions declined by 5 percent between 2010 and 2013. Yet national carbon emissions fell by 3.5 percent during the same period, a decline mostly attributable to economic recession and the replacement of coal with natural gas. In spite of all their sustainability pledges and carbon neutrality goals, U.S. universities have scarcely made more progress than the rest of the country, and most remain almost entirely dependent on the electricity grid.

“Campuses are doing a lot, but could still utilize more renewable energy to meet their needs,” says Levine, who co-authored the analysis. “I’d like to see universities become more self-sufficient.”

As Levine points out, higher education faces the same fundamental challenge as the planet at large: how to cut emissions in spite of burgeoning population and development. From 2007 to 2014, campuses slashed energy consumption per square foot by 2 percent, and emissions per square foot by 13 percent. Those efficiency gains, however, were undermined by growth: During the same period, built space on American campuses grew by 10 percent, and enrollment by 7 percent. The upshot is that nearly as many universities have watched their emissions spike in the last decade as have seen them fall.

One campus that has made ample progress is Colorado State University, a land grant university with more than 33,000 students. Colorado State is located in Fort Collins, where an abundance of cheap coal-fired power long prevented renewable energy from taking root. Beginning in 2009, however, a series of state and utility incentives encouraged Colorado State to install 6,600 kilowatts of solar electricity on two campuses, including a 5.3-megawatt ground-mounted system that blankets 30 acres of its Foothills Campus on the western edge of Fort Collins. Carol Dollard, Colorado State’s energy engineer, says the university is considering another 10 megawatts, with the solar panels perhaps serving as shade for grazing sheep. “In arid Colorado, grass grows better underneath panels, so it could be a great synergy,” she says.

William A. Cotton/CSU
Contractors install solar panels atop Colorado State University’s Braiden Hall.



Yet those additional panels would likely take a while to affect the university’s climate goals. Colorado State doesn’t actually own its larger solar systems; instead, those panels are owned and installed by renewable energy companies, which sell clean-energy credits to the municipal utility. (The university receives payments for leasing out its lands and rooftops, and has the option to buy the panels after 20 years.) The smaller solar arrays that the university does own, says Dollard, provide just 3 to 4 percent of the campus’s power. The upshot is that reaching carbon neutrality by the university’s self-determined deadline of 2050 will require developing different energy sources, perhaps including wind farms on other CSU campuses. “You could cover every roof on campus with solar, and you still wouldn’t get there,” Dollard acknowledges.

For campuses with ample open space, like CSU’s Foothills, installing renewable energy capacity is sometimes feasible. Urban campuses, however, often have little recourse but to purchase power from outside sources. That’s the route taken by Ohio State University, which in 2012 bought 50 megawatts from a privately owned off-site wind farm — enough capacity to meet 21 percent of the energy needs of its main campus in Columbus. Now Ohio State is contemplating leasing its energy infrastructure, such as its electricity distribution systems and geothermal wells, to a private company, which would manage the campus for improved efficiency and sustainability. “Universities all over the country are watching us right now, and they’re thinking, ‘If that works for them, maybe we’ll dip our toes in that water too,’” says Kate Bartter, director of Ohio State’s office of energy and environment.

Other campuses have initiated their own experiments. In 2015, Yale University launched a pilot project to experiment with different ways of imposing an internal carbon charge and reducing greenhouse gas emissions. The initiative divides 20 campus buildings into four groups to test a spectrum of carbon-pricing schemes. One model has buildings compete for budgetary rebates; another gives them rebates when they hit certain carbon reduction targets; a third has buildings pay monthly carbon charges and apply a portion of year-end rebates to energy-saving projects; and the final model simply provides buildings with detailed information about their energy consumption. The experiment is designed not only to cut campus energy use, but also to help other institutions gauge which policies are most effective in slashing emissions.

As Bartter of Ohio State readily admits, one of her university’s greatest carbon challenges has nothing to do with on-campus infrastructure — instead, it’s alleviating the climate impacts of transportation. At many institutions, commuting to campus represents a significant source of emissions. Students and faculty also rack up countless miles attending trips and conferences, leading one group of academics to launch a petition calling on academia to reduce its collective flying. Although Arizona State’s campus intends to become carbon neutral by 2025, it will take the university another decade to compensate for transportation. “You can’t force your employees to live next to campus and not drive,” Darosa points out.

Hampshire College is completing a 19-acre solar array, as it seeks to produce all its power from renewables.
Managing growth, offsetting transportation emissions, and renovating buildings is often easier for private schools, which contend with less red tape and have smaller carbon footprints. Later this year, Hampshire College, in Massachusetts, will complete construction on a 19-acre solar array, the focal point of the college’s plan to generate all of its electricity from on-site renewables. Colby College in Maine, Green Mountain College and Middlebury in Vermont, and Oberlin College — none of which have a student population larger than 3,000 — all perch within the Sierra Club’s top 20.

Atop the rankings sits College of the Atlantic, a tiny liberal arts college in Maine whose student body counts just 350 undergraduates — fewer than some public schools cram into a single Biology 101 lecture hall. In 2007, College of the Atlantic became the country’s first carbon-neutral school, an objective it achieved primarily by investing in offsets provided by a traffic light optimization project in Portland, Oregon. Although the offsets cost just $22,000, the purchase wasn’t universally popular — some students argued that the college should concentrate on improving on-campus efficiency and fostering Maine’s renewable energy industry.

Today, College of the Atlantic no longer buys offsets, but it gets more than 40 percent of its energy from wind farms, community solar projects, local wood pellets, and other fossil fuel-free sources. The college now plans to go carbon-free by 2050 — a target that Anna Demeo, director of energy education and management, says it’s on track to beat.

“We had to lose the title of carbon neutrality,” Demeo says. “But in the end that title wasn’t as important as teaching students from the ground-up how to participate in local renewable energy economies.”

In some cases, being a public institution can be a blessing in disguise. State regulations and policies designed to cut costs or achieve climate goals may force public campuses to clean up their acts. In Massachusetts, a 2007 executive order directing state buildings to reduce their environmental impact led the University of Massachusetts system to slash its greenhouse gas emissions by 17 percent. Those gains aren’t unique to the Bay State: Between 2007 and 2014, private institutions reduced their energy consumption by just 2 percent, while public universities sliced consumption by 5 percent.

The imperative to save money is also a powerful motivator. At Colorado State, the volatility of natural gas prices convinced administrators to embrace comparatively stable solar power.

ALSO FROM YALE e360

In Iowa, A Bipartisan Push to
Become Leader in Wind Energy

Iowa Wind
Thanks to state officials who have long supported renewables, Iowa now leads all U.S. states in the percentage of its energy produced from wind. Big companies, including Facebook and Google, are taking notice and cite clean energy as a major reason for locating new facilities there.
READ MORE
At Ohio State, the declining cost of wind power has guided renewable purchases. “We locked in a long-term price for 20 years,” says Bartter, of Ohio State. “While wind is a bit more expensive right now, I bet it’ll be cheaper in 10 years than the rest of the power we’re buying.”

Universities have also sought to integrate new academic research into facilities operations. At Portland State University in Oregon, a recently launched Living Lab initiative connects student research projects with campus sustainability programs, such as waste reduction efforts. Ohio State’s researchers use wind turbines to study rotor design, and College of the Atlantic students install community solar panels. And in Tempe, Darosa hopes to deploy carbon-capture processes being developed by Arizona State faculty to further slash the university’s footprint.

“We want to be an exemplar for our students, for the community, and for other institutions,” Darosa says. “What could be a better use for a university than to develop cutting-edge technology and apply it in a practical way on campus?”

POSTED ON 27 Oct 2016 IN Business & Innovation Climate Climate Energy Energy Policy & Politics Pollution & Health North America North America 

COMMENTS


NREL can provide free assistance to colleges and
universities interested in going solar. Applications for
the implementation assistance program are due
November 18th. See http://www.nrel.gov/technical-
assistance/universities.html for more details and the
1-page application.

Posted by Jenny Heeter on 28 Oct 2016


Good summary of the progress, or lack of, towards
carbon neutrality goals and the role of renewables.
Well done.

However, comparing College of the Atlantic with
ASU is ridiculous, but that's how Sierra ranks.
While the Sierra Club is a great organization, their
rankings are bunk. Who cares what COA does?
Compared to CSU or Ohio State's emissions they
are noise in the system.

A better comparative basis are STARS rankings,
just out last week from AASHE. Comparing
campuses in their respective class gives a much
more realistic sense of the scale of the problem--
which, I agree with the author, is significant, and
is largely not being met by higher education.
Posted by Robert Soderland on 30 Oct 2016


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


ben goldfarbABOUT THE AUTHOR
Ben Goldfarb is a freelance environmental journalist based in New Haven, CT and correspondent at High Country News. His writing has appeared in Orion Magazine, Scientific American, and The Guardian, among other publications. Previously for Yale Environment 360, Goldfarb reported on the controversy surrounding geoduck farming in Puget Sound. He can be found on Twitter at @Ben_A_Goldfarb.

 
 

RELATED ARTICLES


Obama’s Environmental Legacy:
How Much Can Trump Undo?

Few groups were as shocked and chagrined by Donald Trump’s victory as the environmental community. Yale Environment 360 asked environmentalists, academics, and pro-business representatives just how far Trump might roll back President Obama’s environmental initiatives.
READ MORE

What a Trump Win Means
For the Global Climate Fight

Donald Trump’s ascension to the presidency signals an end to American leadership on international climate policy. With the withdrawal of U.S. support, efforts to implement the Paris agreement and avoid the most devastating consequences of global warming have suffered a huge blow.
READ MORE

For European Wind Industry,
Offshore Projects Are Booming

As Europe’s wind energy production rises dramatically, offshore turbines are proliferating from the Irish Sea to the Baltic Sea. It’s all part of the European Union’s strong push away from fossil fuels and toward renewables.
READ MORE

In Fukushima, A Bitter Legacy
Of Radiation, Trauma and Fear

Five years after the nuclear power plant meltdown, a journey through the Fukushima evacuation zone reveals some high levels of radiation and an overriding sense of fear. For many, the psychological damage is far more profound than the health effects.
READ MORE

For China’s Polluted Megacities,
A Focus on Slashing Emissions

The booming industrial center of Shenzhen is a showcase for Chinese efforts to cut CO2 emissions and make the nation's burgeoning cities more livable. But it remains to be seen whether China's runaway industrial development can give way to a low-carbon future.
READ MORE

 

MORE IN Reports


How Warming Threatens the Genetic
Diversity of Species, and Why It Matters

by jim robbins
Research on stoneflies in Glacier National Park indicates that global warming is reducing the genetic diversity of some species, compromising their ability to evolve as conditions change. These findings have major implications for how biodiversity will be affected by climate change.
READ MORE

Full Speed Ahead: Shipping
Plans Grow as Arctic Ice Fades

by ed struzik
Russia, China, and other nations are stepping up preparations for the day when large numbers of cargo ships will be traversing a once-icebound Arctic Ocean. But with vessels already plying these waters, experts say the time is now to prepare for the inevitable environmental fallout.
READ MORE

How Forensics Are Boosting
Battle Against Wildlife Trade

by heather millar
From rapid genetic analysis to spectrography, high-tech tools are being used to track down and prosecute perpetrators of the illegal wildlife trade. The new advances in forensics offer promise in stopping the trafficking in endangered species.
READ MORE

African Wetlands Project: A Win
For the Climate and the People?

by winifred bird
In Senegal and other developing countries, multinational companies are investing in programs to restore mangrove forests and other wetlands that sequester carbon. But critics say these initiatives should not focus on global climate goals at the expense of the local people’s livelihoods.
READ MORE

Ghost Forests: How Rising Seas
Are Killing Southern Woodlands

by roger real drouin
A steady increase in sea levels is pushing saltwater into U.S. wetlands, killing trees from Florida as far north as New Jersey. But with sea level projected to rise by as much as six feet this century, the destruction of coastal forests is expected to become a worsening problem worldwide.
READ MORE

For European Wind Industry,
Offshore Projects Are Booming

by christian schwägerl
As Europe’s wind energy production rises dramatically, offshore turbines are proliferating from the Irish Sea to the Baltic Sea. It’s all part of the European Union’s strong push away from fossil fuels and toward renewables.
READ MORE

In New Ozone Alert, A Warning
Of Harm to Plants and to People

by jim robbins
Scientists are still trying to unravel the damaging effects of ground-level ozone on life on earth. But as the world warms, their concerns about the impact of this highly toxic, pollution-caused gas are growing.
READ MORE

The Rising Environmental Toll
Of China’s Offshore Island Grab

by mike ives
To stake its claim in the strategic South China Sea, China is building airstrips, ports, and other facilities on disputed islands and reefs. Scientists say the activities are destroying key coral reef ecosystems and will heighten the risks of a fisheries collapse in the region.
READ MORE

Natural Aquaculture: Can We
Save Oceans by Farming Them?

by richard schiffman
A small but growing number of entrepreneurs are creating sea-farming operations that cultivate shellfish together with kelp and seaweed, a combination they contend can restore ecosystems and mitigate the impacts of ocean acidification.
READ MORE

High Stakes on the High Seas:
A Call for International Reserves

by nicola jones
Marine protected areas in national waters have proven successful in helping depleted fish stocks to recover. Now, there is growing momentum for the creation of extensive reserves on the high seas as a way of reversing decades of rampant overfishing.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 PHOTO ESSAY

“Alaska
An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

“Ashaninka
An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

OF INTEREST



Yale