23 May 2013: Analysis

Research on Microbes Points
To New Tools for Conservation

Improvements in DNA technology now make it possible for biologists to identify every living organism in and around a species. Scientists say this could have profound implications for everything from protecting amphibians from a deadly fungus to reintroducing species into the wild.

by richard conniff

A few years ago, as he was puzzling over the egg-tending behavior of a common forest salamander, herpetologist Reid Harris began to wonder if he might be looking at a novel solution to one of the most devastating global pandemics of our time. No one knew it at the time, but the four-toed salamander was about to become a pioneer species in the incipient field of microbial conservation biology, a dramatically different way of understanding and protecting wildlife.

The salamander Harris was studying lives in the leaf litter around forest pools from Michigan to Florida. Not all females in the species tend their nests, but the ones that do have an oddball way of weaving in and out among the eggs.

In 2008, Harris and other researchers at James Madison University in Virginia demonstrated that this weaving behavior serves to inoculate the eggs with antifungal bacteria from the female’s skin — and that the ones receiving this form of probiotic maternal care have a much higher rate of survival against infection by a common egg fungus.

At a herpetological conference three years earlier, Harris had suggested that it might be possible to identify anti-fungal bacteria species occurring naturally on the skin of other amphibian species and “bio-augment” them
The study of the human microbiome ‘could be applied to meet conservation challenges,’ one study found.
as a probiotic protection. And he thought it might work not just against the egg fungus, but also against the chytrid fungus that is causing massive declines in amphibian species worldwide. That fungus has rapidly spread around the world over the past two decades and now affects more than 500 amphibian species in 52 countries. Spores from the chytrid fungus, Batrachochytrium dendrobatidis (or Bd), invade the skin of amphibians and block normal respiration, leading to electrolyte imbalance, brain swelling, and death.

The chytrid fungus has already pushed at least two species over the edge into extinction (the golden toad in the Costa Rican cloud forest, and the gastric brooding frog in Australia). Though scientists are cautious about saying such things categorically, the pandemic may have caused as many as 100 extinctions, with gloomy herpetologists predicting many more still to come.

In any less desperate group of biologists, what Harris was proposing would probably have elicited a faint rolling of the eyes. Asked about the idea of using microbes to protect animals in the field and at zoos, for instance, one zoo curator interviewed for this article remarked that conservationists already have plenty to worry about “without taking some kind of biochemistry approach.”

But just within the past decade, rapid improvements in DNA sequencing technology have made it possible and economically practical to identify every kind of bacteria, fungi, and virus living in and around a species. (In the past, biologists could study only the small percentage of microbes that can be cultured in a Petri dish.) Researchers have so far applied this new technology mainly to the human microbial community, or microbiome, and that research has already produced a dramatic shift in thinking about our own health care. In place of the old germ theory view of microbes as our deadly enemy, it now looks as if they are also our essential allies, both a cause of diseases and a key to preventing them.

But “the professional conservation community appears to be largely unaware of these developments,” a team of biologists noted last year in the journal Conservation Biology. The article proposed “that the concepts and methods used to study the human microbiome could be applied to meet conservation challenges” — for instance, to understand why the same Helicobacter bacteria that are harmless in the wild cause gastritis for cheetahs in zoos, or to figure out how to prevent the callitrichid wasting syndrome that afflicts captive marmosets and tamarins.

Yellow Legged Frog
Courtesy of Vance Vrendenburg
A field test in Kings Canyon park sought to protect mountain yellow-legged frogs from the chytrid fungus.
Harris’s idea about amphibian species caused a light to switch on for Vance Vredenburg of San Francisco State University. He soon struck up a partnership with Harris to test the probiotic idea in the mountains of the Sierra Nevada. There, Vredenburg had been watching helplessly as the chytrid fungus swept through, killing off population after population of mountain yellow-legged frogs.

The skins of yellow-leg frogs turned out to carry the same anti-fungal bacteria species that Harris had found on salamanders back East, though not necessarily enough to protect them. The researchers began to brew the stuff in the lab, producing buckets of murky purple bacterial soup. (Janthinobacterium lividum gets its species name from its bluish color.) Then they briefly bathed lab-reared yellow-legged frogs in the liquid and, after waiting two days for the probiotic to build up on the skin, they exposed the frogs to the chytrid fungus. In the group that had not gotten the protective bath, more than 80 percent soon died. In the group treated with anti-fungal bacteria, none did.

Vredenburg was already thinking about field-testing microbial protection on a pond at 11,000 feet in Sequoia & Kings Canyon National Parks, one of the last remaining havens for the frogs, where the chytrid fungus was soon expected to arrive.

The idea of conservation biologists turning to microbes in the fight against a pandemic probably should not sound all that surprising. Much of the recent reporting about the microbiome in the popular press has made it sound as if this is a bold new world discovered by the medical community. But microbiome research actually originated in the ecological community, says Yale University microbiologist Jo Handelsman. Ecologists started thinking about the beneficial role of microbes at least 130 years ago, she says, when they identified the crucial function of bacteria in fixing nitrogen for soybeans, peanuts, and other legumes. It’s the medical community that has borrowed ecological thinking, she argues, not the other way around.

Even so, the idea of microbial conservation biology may seem like a leap for wildlife scientists because it requires them to think about their familiar
It’s too soon to say how this new way of looking at species will change how we treat wildlife.
study animals not just as organisms, but as superorganisms — that is, as the host species together with its essential bacteria, viruses, and fungi. It requires thinking not just about the genome but about the metagenome, a term Handelsman coined for the interacting genes of the host species and all its microbial fellow travelers.

It’s too soon to say exactly how this new way of looking at species will change how we treat wildlife. But for instance, understanding the microbiome could help improve the generally dismal success rate of efforts to reintroduce captive-bred species to the wild, biologist Kent H. Redford, lead author of the Conservation Biology article, suggested in an interview. Maybe “the zoo zebra you put back in the wild isn’t really a zebra,” he said, because it lacks certain crucial microbes from its native habitat.

For instance, hellbenders, a kind of giant salamander, have rapidly declined in streams from New York and Ohio down to Mississippi. They are now being captive-bred in zoos for reintroduction. But their young “are likely to have atypical and depauperate microbial communities and naive immune defences,” according to another article, being published in the current issue of Ecology Letters. Probiotic inoculation might help them handle the stress of being released into the wild, writes lead author Molly C. Bletz, a researcher in Harris’s lab at James Madison University.

Though the idea has not yet been tested, Bletz and her co-authors also suggest that probiotic inoculation might provide protection against white-nose syndrome, which has devastated bat populations in the eastern United States. They recommend screening European bats to see if some kind of protective microbe might be part of the explanation for why bats there survive infection with the white-nose pathogen, while bats in North America succumb.

Other researchers are also working on the microbiome in various wildlife species simply to establish a microbial baseline, or to get a microbial perspective on a particular biological process. At the University of Colorado
Researchers have looked at the role of microbes in the feast-and-famine cycle of Burmese pythons.
in Boulder, for instance, researchers recently compared the noxious oral bacteria of Komodo dragons in the wild with the somewhat less noxious bacteria of their captive counterparts at the Denver Zoo. Another study in the same lab looked at the role of microbes in the feast-and-famine eating cycle of Burmese pythons. (To be sure that they were looking at a python’s own microbes, says researcher Liz Costello, they first had to characterize the microbes in the food it was eating. That meant putting frozen white rats in a blender and liquefying them for analysis. “It looked like a chocolate milkshake, with teeth in it.”)

And in a recent issue of the journal Science, Michigan State University researchers reported that they have developed a technique for preventing a mosquito species from acquiring and transmitting malaria by inoculating it with a particular strain of Wolbachia bacteria. The same group successfully field-tested a similar technique in 2011 to prevent transmission of dengue fever.

Vance Vredenburg Yellow Legged Frog
Courtesy of Vance Vredenburg, San Francisco State University
Biologist Vance Vredenburg swabs frogs to test for the chytrid fungus.
For Harris’s probiotic idea, the only field test so far is the one the National Park Service gave Vredenburg permission to try in 2010 in California, at Sequoia & Kings Canyon parks. As a precaution against introducing an unfamiliar microbe, he first visited Dusy Basin there that July and found the right bacteria on just one of 40 frogs. Over the next ten days, he brewed the bacteria from a single droplet into tens of billions of bacterial cells, about 10 liters of liquid. Then he returned to inoculate 80 percent of the frog population, leaving the rest untreated as a control. When the chytrid fungus arrived as expected later that summer, only the treated frogs survived.

For Vredenburg, killing weather the following winter and predation by introduced species took some of the satisfaction off that initial success. Only a few yellow-legged frogs have managed to hang on at Dusy Basin. And when another researcher subsequently attempted to inoculate laboratory-reared Panamanian golden frogs against the chytrid fungus using the same bacterial species, J. lividum, the experiment failed completely. To Harris, that merely suggests the need to do more careful preliminary research to identify the right bacteria for a particular species and habitat.

MORE FROM YALE e360

A Rise in Fungal Diseases is
Taking Growing Toll on Wildlife

A Rise in Fungal Diseases is Taking Growing Toll on Wildlife
In an increasingly interconnected world, fungal diseases are spreading and have led to deadly outbreaks in amphibian and bat populations. And in recent years, researchers note, some of the most virulent strains have infected people.
READ MORE
It’s also a reminder of one of the more daunting challenges of working with the microbiome in plants, humans, and wildlife alike: It involves many different microbial species interacting in an almost infinite variety of ways. DNA sequencing can now identify all of those microbial species. But that’s a long way from understanding how they function in a particular situation. And it’s longer still from the point where we can get them to do what we want right now and keep them doing it long enough to make a difference.

While Vredenburg is continuing his work on yellow-legged frogs, Harris has his eyes on Madagascar, which is famous for its 300 or so colorful frog species, 99 percent of them found nowhere else on Earth. So far, this large island off the east coast of Africa has escaped the chytrid fungus. That makes it urgent to prepare by studying the amphibian microbiome there now, says Harris. Ideally, researchers will identify local anti-fungal bacteria that protect a variety of amphibians, rather than just a single species. And because hand-capturing amphibians and bathing them individually is impractical, the researchers are also working to develop protocols to treat entire ponds and wetlands.

Harris’s colleague, Molly Bletz, heads to Madagascar to begin the preliminary work in August.

POSTED ON 23 May 2013 IN Climate Oceans Policy & Politics Science & Technology Water Antarctica and the Arctic North America North America 

COMMENTS


To learn more about our initiative to find effective anti-fungal probiotics for frogs in Madagascar, please visit our website www.frogprobiotics.org. As soon as we are successful in obtaining funding, Molly Bletz and Reid Harris will travel to Madagascar to meet with officials in the Emergency Chytrid Cell and to sample Malagasy frogs for probiotic bacteria. Molly plans to continue this work for her doctoral project.

Posted by Reid Harris on 23 May 2013


Our frog probiotic project is now a reality! Molly Bletz and Reid Harris received a MBZ Conservation Grant to fund our first trip and pilot study on the anti-Bd skin bacteria of frogs in Madagascar. We will be traveling to Madagascar in mid-August to begin this study. Stay tuned as we provide updates on preparation for our trip and blogposts about our work from Madagascar at our website: www.frogprobiotics.org. We thank everyone from the Chytrid Emergency Cell in Madagascar, Association Mitsinjo and Amphibian Specialists Group for their support and enthusiasm.

Posted by Reid Harris on 08 Jun 2013


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


richard conniffABOUT THE AUTHOR
Richard Conniff is a National Magazine Award-winning writer whose articles have appeared in Time, Smithsonian, The Atlantic, National Geographic, and other publications. He is the author of several books, including The Species Seekers: Heroes, Fools, and the Mad Pursuit of Life on Earth. In previous articles for Yale Environment 360, he has written about the pricing of ecosystem services and about new advances that could help produce food crops that can thrive as the climate shifts.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


Asia’s Fragile Caves Face
New Risks from Development

The limestone caves of Southeast Asia and southwest China are home to scores of species of plants and animals, many of them rare. But a rise in tourism, mining, and other human activities is increasingly placing these biodiverse environments at risk.
READ MORE

After Steep Decline, Signs of
Hope for World’s Sea Turtles

Nearly all sea turtle species have been classified as endangered, with precipitous declines in many populations in recent decades. But new protections, particularly in the U.S. and Central America, are demonstrating that dramatic recovery for these remarkable reptiles is possible.
READ MORE

A Decade After Asian Tsunami,
New Forests Protect the Coast

The tsunami that struck Indonesia in 2004 obliterated vast areas of Aceh province. But villagers there are using an innovative microcredit scheme to restore mangrove forests and other coastal ecosystems that will serve as a natural barrier against future killer waves and storms.
READ MORE

In Romania, Highway Boom Poses Looming Threat to Bears
Romania, one of Europe’s poorest nations, badly needs a modern highway system. But conservationists warn that unless the movements of wildlife are accommodated, a planned boom in road construction could threaten one of the continent’s last large brown bear populations.
READ MORE

Fast-Warming Gulf of Maine
Offers Hint of Future for Oceans

The waters off the coast of New England are warming more rapidly than almost any other ocean region on earth. Scientists are now studying the resulting ecosystem changes, and their findings could provide a glimpse of the future for many of the world’s coastal communities.
READ MORE

 

MORE IN Analysis


Can Green Bonds Bankroll
A Clean Energy Revolution?

by marc gunther
To slow global warming, tens of trillions of dollars will need to be spent in the coming decades on renewable energy projects. Some banks and governments are issuing green bonds to fund this transformation, but major questions remain as to whether this financing tool will play a game-changing role.
READ MORE

What Is the Carbon Limit?
That Depends Who You Ask

by fred pearce
Scientists are offering widely varying estimates of how much carbon we can emit into the atmosphere without causing dangerous climate change. But establishing a so-called carbon budget is critical if we are to keep the planet a safe place to live in the coming century.
READ MORE

Beyond Treaties: A New Way of
Framing Global Climate Action

by fred pearce
As negotiators look to next year’s UN climate conference in Paris, there is increasing discussion of a new way forward that does not depend on sweeping international agreements. Some analysts are pointing to Plan B — recasting the climate issue as one of national self-interest rather than global treaties.
READ MORE

Oil Companies Quietly Prepare
For a Future of Carbon Pricing

by mark schapiro and jason scorse
The major oil companies in the U.S. have not had to pay a price for the contribution their products make to climate change. But internal accounting by the companies, along with a host of other signs, suggest that may soon change — though the implications of a price on carbon are far from clear.
READ MORE

Can Carbon Capture Technology
Be Part of the Climate Solution?

by david biello
Some scientists and analysts are touting carbon capture and storage as a necessary tool for avoiding catastrophic climate change. But critics of the technology regard it as simply another way of perpetuating a reliance on fossil fuels.
READ MORE

Mideast Water Wars: In Iraq,
A Battle for Control of Water

by fred pearce
Conflicts over water have long haunted the Middle East. Yet in the current fighting in Iraq, the major dams on the Tigris and Euphrates rivers are seen not just as strategic targets but as powerful weapons of war.
READ MORE

Peak Coal: Why the Industry’s
Dominance May Soon Be Over

by fred pearce
The coal industry has achieved stunning growth in the last decade, largely due to increased demand in China. But big changes in China’s economy and its policies are expected to put an end to coal’s big boom.
READ MORE

Obama’s New Emission Rules:
Will They Survive Challenges?

by michael b. gerrard
The sweeping nature of President Obama’s proposed regulations limiting carbon dioxide emissions from coal-fired power plants is likely to open his initiative to serious legal challenges. To date, however, the courts have given the federal government wide latitude in regulating CO2 under the Clean Air Act.
READ MORE

On the Road to Green Energy,
Germany Detours on Dirty Coal

by fred pearce
While Germany continues to expand solar and wind power, the government’s decision to phase out nuclear energy means it must now rely heavily on the dirtiest form of coal, lignite, to generate electricity. The result is that after two decades of progress, the country’s CO2 emissions are rising.
READ MORE

Why Wave Power Has Lagged
Far Behind as Energy Source

by dave levitan
Researchers have long contended that power from ocean waves could make a major contribution as a renewable energy source. But a host of challenges, including the difficulty of designing a device to capture the energy of waves, have stymied efforts to generate electricity from the sea.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 PHOTO GALLERY

“Peter
Photographer Peter Essick documents the swift changes wrought by global warming in Antarctica, Greenland, and other far-flung places.
View the gallery.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

OF INTEREST



Yale