17 May 2012: Analysis

The Vital Chain: Connecting
The Ecosystems of Land and Sea

A new study from a Pacific atoll reveals the links between native trees, bird guano, and the giant manta rays that live off the coast. In unraveling this intricate web, the researchers point to the often little-understood interconnectedness between terrestrial and marine ecosystems.

by carl zimmer

For the past few years, Douglas McCauley has been tracking Pacific manta rays that live around a chain of remote islands called Palmyra Atoll. McCauley, a marine biologist at the University of California at Berkeley, and his colleagues tag the giant fishes with “pingers” — acoustic devices that emit pulses — and then follow the sound. “You’re in a boat, following the animal night and day,” says McCauley.

The scientists embarked on this study to learn more about the ecology of these majestic animals. “There’s remarkably little known about manta rays,” McCauley says. Pacific manta rays are among the biggest fishes in the world, with wing-like fins that can stretch as far as nine meters across. To feed their massive bodies, they suck water into their mouth and out of their gills, trapping tiny animals in a filter-like mesh of bones. Any changes to the ocean food web — a rise in temperature or a drop in nutrient levels, for example — can influence the size of the manta ray population.

As the scientists followed the manta rays, they noticed something peculiar. Off in the distance, they could see Palmyra’s island chain. Much of Palmyra
Life on land and life in the ocean are bonded in unexpectedly powerful ways.
is still covered by forests of native trees. But there are also stretches of the island dominated by coconut palms — first brought by Polynesians centuries ago and increasingly planted today as a cash crop. As McCauley gazed off at the islands, it occurred to him that he was spending all his time off the coast of the native forests.

“We were puzzled that we kept being brought back to these coastlines with abundant native forests,” says McCauley. “We realized that maybe to understand the manta rays, we had to follow this message they were giving us.”

McCauley and his colleagues followed up that initial hunch with rigorous scientific tests. And it turned out they were right. Each hour that they spent surveying manta rays off the coast of native forests, the scientists encountered, on average, four fish. Off the coast of coconut palm stands, they found none.

What do trees and manta rays have in common? In today’s issue of the journal Scientific Reports, the scientists offer evidence that ecological links join them across the barrier between sea and land.

The new study is a particularly striking illustration of a pattern that scientists are finding around the world. Life on land and life in the ocean are bonded in unexpectedly powerful ways. While they may seem like separate realms, the well being of one depends on the other.

Click to enlarge
Pacific Manta Ray

Courtesy of Gareth Williams
Researchers found that Pacific manta rays were affected by ecological changes in coastal forests.
To figure out why native forests help manta rays thrive, McCauley and his colleagues made careful measurements of Palmyra’s marine and terrestrial ecosystems. They started with sea birds such as red-footed boobies, which fly over the ocean to catch fish. The birds then return to the islands to make nests in the trees. When the scientists surveyed Palmyra’s birds, they found that the native forests had five times more birds than the palm forests.

The difference lies in the architecture of the trees. Palm trees are essentially pillars, with tufts of leaves on top that whip back and forth in the wind. Palmyra’s native trees, by contrast, form dense, thick canopies where birds can find stability and protection.

Nesting in the trees, the birds drop lots of guano on the ground. The guano is rich in nitrogen; the scientists found that the soils of the native forests have nitrogen levels five times higher than those found in palm forests. The guano thus fertilizes the trees, which build up a greater concentration of nitrogen in their leaves. The leaves then fall to the ground and create a deep, rich soil.

To track the fate of the nitrogen, McCauley and his colleagues took advantage of a quirk of guano. Nitrogen atoms come in different isotopes (with different number of neutrons in their nucleus). Guano happens to be rich in one isotope known as nitrogen-15. “We used the chemistry to link
Runoff from native forests had 18 times more nitrogen than that of planted palm forests.
each one of these interactions one to the other,” said McCauley.

The soil and leaves in native forests are high in nitrogen-15 as well. When the rain comes to Palmyra, it washes that guano-derived nitrogen — along with other nutrients from the rich soil — out into the ocean. The runoff from the native forests had 18 times more nitrogen than that of palm forests, the scientists report.

That nitrogen influences life on the way from the land to the sea. Clams living in the intertidal zones on the coasts of native forests have elevated levels of nitrogen-15. So do sponges in the reefs further out at sea. The nitrogen and other nutrients flowing out from the native forests fertilize phytoplankton — the sun-harnessing algae in the ocean — much as it does the trees on land.

McCauley and his colleagues also found that the zooplankton — the tiny animals that graze on the phytoplankton — was three times more abundant off the coast of native Palmyra forests than off the coasts of palm forests.

McCauley’s study highlights why ecosystems on land and at sea can become linked. Nitrogen and other nutrients are often in scarce supply, and living things are very good at concentrating them and moving them from one place to another. Palmyra’s birds draw out the nitrogen from the ocean and concentrate it in the forests, which then deliver a rich supply of nitrogen and other nutrients back to the ocean, ultimately providing manta rays with food.

A similar process takes place in the northwestern United States, where streams are starved for nitrogen. Each year, vast numbers of salmon swim
When we damage the links between land and sea, we can have surprisingly big effects on ecosystems.
from the Pacific into those streams, where they mate, lay eggs, and die. We’re all familiar with footage of bears feasting on salmon, but they’re not the only ones to benefit from the migration of the fish. After the salmon die, the nitrogen in their bodies fertilizes the streams and enriches the soil. Plants that grow around salmon-choked streams have high levels of nitrogen 15 in their tissues.

These links between land and sea are particularly vulnerable, and when we damage them, we can have some surprisingly big effects on ecosystems. When people in the Pacific cut down native trees to plant coconut palms, they doubtless have no idea that they are affecting the lives of manta rays. And yet McCauley’s research suggests that this is precisely what is happening. As the native forests shrink, so too does the prime ocean habitat for the manta rays.

The disruptions can also flow the other way, from sea to land. On the Aleutian Islands in Alaska, for example, people introduced foxes in the early 1900s to harvest their fur. The foxes proceeded to attack the sea birds that nested on the islands, driving down their numbers. Since the birds ingested nitrogen-rich fish and deposited the nitrogen on land, the smaller population of birds delivered a smaller supply of nitrogen to the islands. The soil became less fertile, and the island ecosystems shifted from grasslands to shrubs.

Humans are also good at pumping nutrients between ecosystems. Farmers, for example, spread fertilizers on their fields, and the nitrogen and phosphates get washed into rivers and into the oceans. But this type of runoff is no cure for damaged land-to-sea links. It delivers too many nutrients in too little time. Instead of stimulating healthy ecosystems, it can instead create so-called “dead zones” in places like the mouth of the Mississippi River.

“Leave it to us to overdo things,” says McCauley.

POSTED ON 17 May 2012 IN Biodiversity Business & Innovation Oceans Science & Technology Science & Technology Asia North America North America 

COMMENTS


Great article. In the small Oregon fishing community of Port Orford, people are taking control of their destiny by conducting their own brand of conservation. They are using local science to inform their fishing quotas, and saving upstream forests to save their salmon—a farsighted perspective that considers both their links to the land, and the future of their children.

Sustainable Land Development Initiative and Ocean Mountain Ranch — a SLDI carbon-negative project providing a model for sustainable forest and wildlife habitat management, integrated with mixed-use development activities — co-hosted the world premiere of Ocean Frontiers, a feature-length movie which captures the compelling stories of a number of ocean pioneers — people who are embarking on a new course of stewardship, in defense of the seas that sustain them...

http://www.triplepundit.com/2012/03/ocean-frontiers-dawn-new-era-ocean-stewardship/

Posted by Terry Mock on 17 May 2012


These types of land/sea connections have long been known by many native cultures across the Pacific. In Hawaii, the language often records these connections with the names of organisms.

Many terrestrial animals and plants have marine counterparts with the same name that illustrates either a similarity in form, function, or even a more complex connection as is described above. In Hawaiian the manta ray is called hāhālua, and a native tree, a lobelia, also has the same name. I have not been able to find the connection between the two as yet, but there certainly is one. Traditional knowledge systems have much to teach us and they incorporate detailed observations over a thousand or more years. Of course this would be little use on Palmyra that did not have a native culture, but in inhabited areas there is much that can be gained from respecting these knowledge systems. The article above highlights a neat bit of research none-the-less, and I was excited to read it.

Posted by Andy Collins on 17 May 2012


Comments have been closed on this feature.
carl zimmerABOUT THE AUTHOR
Carl Zimmer writes about science for The New York Times and a number of magazines. A 2007 winner of the National Academies of Science Communication Award, he is the author of six books, including Microcosm: E. coli and the New Science of Life. In previous articles for Yale Environment 360, he has written about how ecologists are using network theory and about how global warming will cause an evolutionary explosion for animals and plants.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


Beyond the Oregon Protests:
The Search for Common Ground

Thrust into the spotlight by a group of anti-government militants as a place of confrontation, the Malheur wildlife refuge is actually a highly successful example of a new collaboration in the West between local residents and the federal government.
READ MORE

How ‘Natural Geoengineering’
Can Help Slow Global Warming

An overlooked tool in fighting climate change is enhancing biodiversity to maximize the ability of ecosystems to store carbon. Key to that strategy is preserving top predators to control populations of herbivores, whose grazing reduces the amount of CO2 that ecosystems absorb.
READ MORE

What’s Causing Deadly Outbreaks of
Fungal Diseases in World’s Wildlife?

An unprecedented global wave of virulent fungal infections is decimating whole groups of animals — from salamanders and frogs, to snakes and bats. While scientists are still trying to understand the causes, they are pointing to intercontinental travel, the pet trade, and degraded habitat as likely factors.
READ MORE

Eyes in the Sky: Green Groups
Are Harnessing Data from Space

An increasing number of nonprofit organizations are relying on satellite imagery to monitor environmental degradation. Chief among them is SkyTruth, which has used this data to expose the extent of the BP oil spill, uncover mining damage, and track illegal fishing worldwide.
READ MORE

Unnatural Balance: How Food
Waste Impacts World’s Wildlife

New research indicates that the food discarded in landfills and at sea is having a profound effect on wildlife populations and fisheries. But removing that food waste creates its own ecological challenges.
READ MORE

 

MORE IN Analysis


How ‘Natural Geoengineering’
Can Help Slow Global Warming

by oswald j. schmitz
An overlooked tool in fighting climate change is enhancing biodiversity to maximize the ability of ecosystems to store carbon. Key to that strategy is preserving top predators to control populations of herbivores, whose grazing reduces the amount of CO2 that ecosystems absorb.
READ MORE

Why Paris Worked: A Different
Approach to Climate Diplomacy

by david victor
A more flexible strategy, a willingness to accept nonbinding commitments, and smart leadership by the French all helped secure a climate deal in Paris. The real work lies ahead, but Paris created a strong, if long overdue, foundation on which to begin building a carbon-free future.
READ MORE

Turning Point: Landmark Deal
On Climate Is Reached in Paris

by fred pearce
In what could be a turning point, the world’s nations reached an agreement in Paris that would commit them to cutting emissions and keeping global warming below 2 degrees. Although the pledges are not binding, the deal includes a review process to determine if countries are meeting their commitments.
READ MORE

Will Paris Conference Finally
Achieve Real Action on Climate?

by fred pearce
The emission pledges from the world’s nations still fall short of the goal for limiting global warming. But as negotiators convene in Paris this week, there is cautious optimism that a significant international agreement on climate can be reached.
READ MORE

Will Indonesian Fires Spark
Reform of Rogue Forest Sector?

by lisa palmer
Massive fires in Indonesia caused by the burning of forests and peatlands for agriculture have shrouded large areas of Southeast Asia in smoke this fall. But analysts say international anger over the fires could finally lead to a reduction in Indonesia’s runaway deforestation.
READ MORE

How China and U.S. Became
Unlikely Partners on Climate

by orville schell
Amid tensions between the U.S. and China, one issue has emerged on which the two nations are finding common ground: climate change. Their recent commitments on controlling emissions have created momentum that could help international climate talks in Paris in December.
READ MORE

Will the Paris Climate Talks
Be Too Little and Too Late?

by fred pearce
At the upcoming U.N. climate conference, most of the world’s major nations will pledge to make significant reductions in greenhouse gas emissions. But serious doubts remain as to whether these promised cuts will be nearly enough to avoid the most severe impacts of climate change.
READ MORE

Global Extinction Rates: Why
Do Estimates Vary So Wildly?

by fred pearce
Is it 150 species a day or 24 a day or far less than that? Prominent scientists cite dramatically different numbers when estimating the rate at which species are going extinct. Why is that?
READ MORE

Why the Fossil Fuel Divestment
Movement May Ultimately Win

by marc gunther
The fossil fuel divestment campaign has so far persuaded only a handful of universities and investment funds to change their policies. But if the movement can help shift public opinion about climate change, its organizers say, it will have achieved its primary goal.
READ MORE

Alien Islands: Why Killing Rats
Is Essential to Save Key Wildlife

by ted williams
Alien rats introduced by ships are decimating populations of birds and other wildlife on islands from the sub-Antarctic to California. Effective programs to eradicate the rats are underway but are encountering opposition from animal activists and some green groups.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter


CONNECT


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 VIDEO

“video
Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

“Battle
The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.

e360 VIDEO

“Alaska
A 2015 Yale e360 Video Contest winner captures stunning images of wild salmon runs in Alaska.
Watch the video.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.

e360 SPECIAL REPORT

“Tainted
A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

OF INTEREST



Yale