17 May 2012: Analysis

The Vital Chain: Connecting
The Ecosystems of Land and Sea

A new study from a Pacific atoll reveals the links between native trees, bird guano, and the giant manta rays that live off the coast. In unraveling this intricate web, the researchers point to the often little-understood interconnectedness between terrestrial and marine ecosystems.

by carl zimmer

For the past few years, Douglas McCauley has been tracking Pacific manta rays that live around a chain of remote islands called Palmyra Atoll. McCauley, a marine biologist at the University of California at Berkeley, and his colleagues tag the giant fishes with “pingers” — acoustic devices that emit pulses — and then follow the sound. “You’re in a boat, following the animal night and day,” says McCauley.

The scientists embarked on this study to learn more about the ecology of these majestic animals. “There’s remarkably little known about manta rays,” McCauley says. Pacific manta rays are among the biggest fishes in the world, with wing-like fins that can stretch as far as nine meters across. To feed their massive bodies, they suck water into their mouth and out of their gills, trapping tiny animals in a filter-like mesh of bones. Any changes to the ocean food web — a rise in temperature or a drop in nutrient levels, for example — can influence the size of the manta ray population.

As the scientists followed the manta rays, they noticed something peculiar. Off in the distance, they could see Palmyra’s island chain. Much of Palmyra
Life on land and life in the ocean are bonded in unexpectedly powerful ways.
is still covered by forests of native trees. But there are also stretches of the island dominated by coconut palms — first brought by Polynesians centuries ago and increasingly planted today as a cash crop. As McCauley gazed off at the islands, it occurred to him that he was spending all his time off the coast of the native forests.

“We were puzzled that we kept being brought back to these coastlines with abundant native forests,” says McCauley. “We realized that maybe to understand the manta rays, we had to follow this message they were giving us.”

McCauley and his colleagues followed up that initial hunch with rigorous scientific tests. And it turned out they were right. Each hour that they spent surveying manta rays off the coast of native forests, the scientists encountered, on average, four fish. Off the coast of coconut palm stands, they found none.

What do trees and manta rays have in common? In today’s issue of the journal Scientific Reports, the scientists offer evidence that ecological links join them across the barrier between sea and land.

The new study is a particularly striking illustration of a pattern that scientists are finding around the world. Life on land and life in the ocean are bonded in unexpectedly powerful ways. While they may seem like separate realms, the well being of one depends on the other.

Click to enlarge
Pacific Manta Ray

Courtesy of Gareth Williams
Researchers found that Pacific manta rays were affected by ecological changes in coastal forests.
To figure out why native forests help manta rays thrive, McCauley and his colleagues made careful measurements of Palmyra’s marine and terrestrial ecosystems. They started with sea birds such as red-footed boobies, which fly over the ocean to catch fish. The birds then return to the islands to make nests in the trees. When the scientists surveyed Palmyra’s birds, they found that the native forests had five times more birds than the palm forests.

The difference lies in the architecture of the trees. Palm trees are essentially pillars, with tufts of leaves on top that whip back and forth in the wind. Palmyra’s native trees, by contrast, form dense, thick canopies where birds can find stability and protection.

Nesting in the trees, the birds drop lots of guano on the ground. The guano is rich in nitrogen; the scientists found that the soils of the native forests have nitrogen levels five times higher than those found in palm forests. The guano thus fertilizes the trees, which build up a greater concentration of nitrogen in their leaves. The leaves then fall to the ground and create a deep, rich soil.

To track the fate of the nitrogen, McCauley and his colleagues took advantage of a quirk of guano. Nitrogen atoms come in different isotopes (with different number of neutrons in their nucleus). Guano happens to be rich in one isotope known as nitrogen-15. “We used the chemistry to link
Runoff from native forests had 18 times more nitrogen than that of planted palm forests.
each one of these interactions one to the other,” said McCauley.

The soil and leaves in native forests are high in nitrogen-15 as well. When the rain comes to Palmyra, it washes that guano-derived nitrogen — along with other nutrients from the rich soil — out into the ocean. The runoff from the native forests had 18 times more nitrogen than that of palm forests, the scientists report.

That nitrogen influences life on the way from the land to the sea. Clams living in the intertidal zones on the coasts of native forests have elevated levels of nitrogen-15. So do sponges in the reefs further out at sea. The nitrogen and other nutrients flowing out from the native forests fertilize phytoplankton — the sun-harnessing algae in the ocean — much as it does the trees on land.

McCauley and his colleagues also found that the zooplankton — the tiny animals that graze on the phytoplankton — was three times more abundant off the coast of native Palmyra forests than off the coasts of palm forests.

McCauley’s study highlights why ecosystems on land and at sea can become linked. Nitrogen and other nutrients are often in scarce supply, and living things are very good at concentrating them and moving them from one place to another. Palmyra’s birds draw out the nitrogen from the ocean and concentrate it in the forests, which then deliver a rich supply of nitrogen and other nutrients back to the ocean, ultimately providing manta rays with food.

A similar process takes place in the northwestern United States, where streams are starved for nitrogen. Each year, vast numbers of salmon swim
When we damage the links between land and sea, we can have surprisingly big effects on ecosystems.
from the Pacific into those streams, where they mate, lay eggs, and die. We’re all familiar with footage of bears feasting on salmon, but they’re not the only ones to benefit from the migration of the fish. After the salmon die, the nitrogen in their bodies fertilizes the streams and enriches the soil. Plants that grow around salmon-choked streams have high levels of nitrogen 15 in their tissues.

These links between land and sea are particularly vulnerable, and when we damage them, we can have some surprisingly big effects on ecosystems. When people in the Pacific cut down native trees to plant coconut palms, they doubtless have no idea that they are affecting the lives of manta rays. And yet McCauley’s research suggests that this is precisely what is happening. As the native forests shrink, so too does the prime ocean habitat for the manta rays.

The disruptions can also flow the other way, from sea to land. On the Aleutian Islands in Alaska, for example, people introduced foxes in the early 1900s to harvest their fur. The foxes proceeded to attack the sea birds that nested on the islands, driving down their numbers. Since the birds ingested nitrogen-rich fish and deposited the nitrogen on land, the smaller population of birds delivered a smaller supply of nitrogen to the islands. The soil became less fertile, and the island ecosystems shifted from grasslands to shrubs.

Humans are also good at pumping nutrients between ecosystems. Farmers, for example, spread fertilizers on their fields, and the nitrogen and phosphates get washed into rivers and into the oceans. But this type of runoff is no cure for damaged land-to-sea links. It delivers too many nutrients in too little time. Instead of stimulating healthy ecosystems, it can instead create so-called “dead zones” in places like the mouth of the Mississippi River.

“Leave it to us to overdo things,” says McCauley.

POSTED ON 17 May 2012 IN Biodiversity Business & Innovation Oceans Science & Technology Science & Technology Asia North America North America 

COMMENTS


Great article. In the small Oregon fishing community of Port Orford, people are taking control of their destiny by conducting their own brand of conservation. They are using local science to inform their fishing quotas, and saving upstream forests to save their salmon—a farsighted perspective that considers both their links to the land, and the future of their children.

Sustainable Land Development Initiative and Ocean Mountain Ranch — a SLDI carbon-negative project providing a model for sustainable forest and wildlife habitat management, integrated with mixed-use development activities — co-hosted the world premiere of Ocean Frontiers, a feature-length movie which captures the compelling stories of a number of ocean pioneers — people who are embarking on a new course of stewardship, in defense of the seas that sustain them...

http://www.triplepundit.com/2012/03/ocean-frontiers-dawn-new-era-ocean-stewardship/

Posted by Terry Mock on 17 May 2012


These types of land/sea connections have long been known by many native cultures across the Pacific. In Hawaii, the language often records these connections with the names of organisms.

Many terrestrial animals and plants have marine counterparts with the same name that illustrates either a similarity in form, function, or even a more complex connection as is described above. In Hawaiian the manta ray is called hāhālua, and a native tree, a lobelia, also has the same name. I have not been able to find the connection between the two as yet, but there certainly is one. Traditional knowledge systems have much to teach us and they incorporate detailed observations over a thousand or more years. Of course this would be little use on Palmyra that did not have a native culture, but in inhabited areas there is much that can be gained from respecting these knowledge systems. The article above highlights a neat bit of research none-the-less, and I was excited to read it.

Posted by Andy Collins on 17 May 2012


Comments have been closed on this feature.
carl zimmerABOUT THE AUTHOR
Carl Zimmer writes about science for The New York Times and a number of magazines. A 2007 winner of the National Academies of Science Communication Award, he is the author of six books, including Microcosm: E. coli and the New Science of Life. In previous articles for Yale Environment 360, he has written about how ecologists are using network theory and about how global warming will cause an evolutionary explosion for animals and plants.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


Life on the Mississippi:
Tale of the Lost River Shrimp

The 20th-century re-engineering of the Mississippi River wreaked havoc on natural systems and devastated once-abundant populations of native river shrimp. Biologist Paul Hartfield has focused his work on studying these creatures, which were known for making one of the world’s great migrations.
READ MORE

Brown Pelicans: A Test Case for
The U.S. Endangered Species Act

Brown pelicans were removed from the U.S. Endangered Species List in 2009, in what was considered a major conservation success story. But a recent crash in Pacific Coast populations of sardines, the pelican’s prime food, is posing new threats to these oddly elegant birds.
READ MORE

In a Troubled African Park,
A Battle Over Oil Exploration

Congo's Virunga National Park has long been known for its mountain gorillas and for the lawless militias that operate there. But the recent shooting of the park warden and plans to begin oil exploration in the park have sparked concern about the future of this iconic World Heritage Site.
READ MORE

A Public Relations Drive to
Stop Illegal Rhino Horn Trade

Conservation groups are mounting campaigns to persuade Vietnamese consumers that buying rhino horn is decidedly uncool. But such efforts are likely to succeed only as part of a broader initiative to crack down on an illicit trade that is decimating African rhino populations.
READ MORE

Amid Elephant Slaughter,
Ivory Trade in U.S. Continues

In the last year, the U.S. government and nonprofits have put a spotlight on the illegal poaching of Africa’s elephants and Asia’s insatiable demand for ivory. But the media coverage has ignored a dirty secret: The U.S. has its own large ivory trade that has not been adequately regulated.
READ MORE

 

MORE IN Analysis


Peak Coal: Why the Industry’s
Dominance May Soon Be Over

by fred pearce
The coal industry has achieved stunning growth in the last decade, largely due to increased demand in China. But big changes in China’s economy and its policies are expected to put an end to coal’s big boom.
READ MORE

Obama’s New Emission Rules:
Will They Survive Challenges?

by michael b. gerrard
The sweeping nature of President Obama’s proposed regulations limiting carbon dioxide emissions from coal-fired power plants is likely to open his initiative to serious legal challenges. To date, however, the courts have given the federal government wide latitude in regulating CO2 under the Clean Air Act.
READ MORE

On the Road to Green Energy,
Germany Detours on Dirty Coal

by fred pearce
While Germany continues to expand solar and wind power, the government’s decision to phase out nuclear energy means it must now rely heavily on the dirtiest form of coal, lignite, to generate electricity. The result is that after two decades of progress, the country’s CO2 emissions are rising.
READ MORE

Why Wave Power Has Lagged
Far Behind as Energy Source

by dave levitan
Researchers have long contended that power from ocean waves could make a major contribution as a renewable energy source. But a host of challenges, including the difficulty of designing a device to capture the energy of waves, have stymied efforts to generate electricity from the sea.
READ MORE

UN Panel Looks to Renewables
As the Key to Stabilizing Climate

by fred pearce
In its latest report, the UN's Intergovernmental Panel on Climate Change makes a strong case for a sharp increase in low-carbon energy production, especially solar and wind, and provides hope that this transformation can occur in time to hold off the worst impacts of global warming.
READ MORE

Will Increased Food Production
Devour Tropical Forest Lands?

by william laurance
As global population soars, efforts to boost food production will inevitably be focused on the world’s tropical regions. Can this agricultural transformation be achieved without destroying the remaining tropical forests of Africa, South America, and Asia?
READ MORE

New Satellite Boosts Research
On Global Rainfall and Climate

by nicola jones
Although it may seem simple, measuring rainfall worldwide has proven to be a difficult job for scientists. But a recently launched satellite is set to change that, providing data that could help in understanding whether global rainfall really is increasing as the planet warms.
READ MORE

UN Climate Report Is Cautious
On Making Specific Predictions

by fred pearce
The draft of the latest report from the Intergovernmental Panel on Climate Change warns that the world faces serious risks from warming and that the poor are especially vulnerable. But it avoids the kinds of specific forecasts that have sparked controversy in the past.
READ MORE

Rebuilding the Natural World:
A Shift in Ecological Restoration

by richard conniff
From forests in Queens to wetlands in China, planners and scientists are promoting a new approach that incorporates experiments into landscape restoration projects to determine what works to the long-term benefit of nature and what does not.
READ MORE

In the Pastures of Colombia,
Cows, Crops and Timber Coexist

by lisa palmer
As an ambitious program in Colombia demonstrates, combining grazing and agriculture with tree cultivation can coax more food from each acre, boost farmers’ incomes, restore degraded landscapes, and make farmland more resilient to climate change.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 PHOTO GALLERY

“Peter
Photographer Peter Essick documents the swift changes wrought by global warming in Antarctica, Greenland, and other far-flung places.
View the gallery.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

OF INTEREST



Yale