22 Mar 2011: Interview

Tracking the Destructive Power
Of the Pacific Ocean’s Tsunamis

The devastating tsunami in northeastern Japan is only one of many that have battered Japan over the eons. In an interview with Yale Environment 360, tsunami and earthquake expert Lori Dengler describes the historic and paleological record of tsunamis across the Pacific, and what it may mean in the future for Japan and the western United States.

Geophysicist Lori Dengler of Humboldt State University in California has traveled the world studying the impacts of tsunamis and working with governments to mitigate their wrath. Earlier this year, just weeks before the recent Japanese earthquake and tsunami, Dengler was in Tokyo, attending a meeting of Japanese port officials interested in better preparing for the tsunamis that will inevitably strike their earthquake-prone nation.

Even years of visiting regions struck by tsunamis, such as the massively destructive Indian Ocean tsunami of 2004, did not prepare Dengler for the images of entire Japanese towns being obliterated by a 30-foot wall of water. Not even Japan, with its unsurpassed preparedness, could escape the destruction of a 9.0 earthquake and tsunami that has taken the lives of 10,000 to 20,000 people.

Lori Dengler
Lori Dengler
In an interview with Yale Environment 360, Dengler describes the long history of Japanese tsunamis, including an 1896 tsunami that killed 22,000 people in the same region as the recent disaster. The prehistoric record, Dengler explains, contains evidence of even more powerful tsunamis in Japan and along the western coast of North America — warning signs that nations across the Pacific rim need to further bolster their preparations for tsunamis. Referring to the scale of the latest tsunami, Dengler said, “It’s very humbling, and I’m not going to predict what Mother Nature will do next. But let’s just say that she holds all the cards.”

Yale Environment 360: Given all of the attention that has rightly been paid to the unfolding nuclear crisis in Japan, it almost seems as if we’ve lost sight of what an extraordinary geological event this was. Could you put this sequence in historical perspective?

Lori Dengler: Certainly big earthquakes and great tsunamis are no strangers to Japan. Japan has a long and tragic history with both, and the location of this event was really no surprise at all. We call it the Sanriku Coast of northeastern Honshu, and a number of very tragic events have occurred in that area, including the Meiji-Sanriku tsunami of 1896, when an estimated 22,000 people died. The highest water heights in that event approached 90 feet, in Iwate Prefecture.

So none of us [earthquake experts] were surprised by the location. What was certainly surprising was the size of this earthquake. When you look at Japan’s historic record of tsunamis, they’ve been generated by earthquakes that are in the magnitude 8 to 8.5 range. This was very clearly the largest magnitude earthquake recorded since we’ve had modern seismographs since 1900. The giant Tohoku District earthquake in 869 may have been close to this in size. There are certainly some people saying that this event was much larger than what the Japanese had been planning for. A magnitude 9 earthquake is 30 times more energetic than a magnitude 8, and more important are the dimensions of the fault rupture.

A typical magnitude 8 might be on the order of a hundred miles long and 50 to 60 miles in width. This rupture was about 350 miles long and 150 to 175 miles in width. That is an enormous area to be deformed and a phenomenal volume of ocean of seawater that is displaced, and the largest surges fall right back on to the nearby coastline and the remaining surges head out across the Pacfic. It’s not that we haven’t had earthquakes that size before. We had an 8.8 in northern Chile only a little over a year ago and of course the great Indian Ocean tsunami in 2004 caused by the Andaman-Sumatra earthquake — that was a magnitude around 9.2. This earthquake is still not as big as the largest earthquake that we’ve ever recorded with modern instruments, a 9.5, and that occurred in 1960 when a very similar kind of fault ruptured much of the south-central Chilean subduction zone.

These great earthquakes do an incredible modification of the Earth’s surface. In the recent Japan earthquake, the plate that is subducting is the Pacific plate and it’s going under the North American plate. Most of the time those two are stuck together, but the Pacific plate is continuing to subduct all the time. It’s moving at about the rate that your fingernails grow. So that subducting plate is being basically pulled down by gravity. And as that plate gets pulled underneath it literally squeezes or compresses the plate on top just like a giant spring. That may keep going on for hundreds or even a thousand years. When the strength of that bond between the two plates is finally too great, we get this mega-thrust earthquake, this rupture that goes along the fault system. The overriding plate suddenly springs back. And it probably wasn’t just one single rupture. There were probably a number of secondary faults that may have also ruptured near that edge.

e360: Could you make an analogy that the plate kind of springs up, almost like a floorboard that was under pressure that pops up all of a sudden?

Dengler: Yes. It’s like a spring that’s been loaded. So imagine this board has been pulled down, pulled down, pulled down and then suddenly it’s released, and it’s going to pop up very quickly.

e360: Right. Let me ask you about earlier earthquakes and tsunamis in Japan.

Dengler: The worst was in 1923 and that was the great Tokyo earthquake that killed something like 140,000 people.

e360: That was a smaller magnitude?

Dengler: It was smaller in magnitude, but that earthquake was centered very close to Tokyo and it triggered an enormous fire and the fire probably contributed to more deaths than the earthquake. The earthquake occurred at a time when people were preparing dinner and at that time they used these open fire braziers. Most of the homes were wood construction and it very, very quickly became an inferno. So that was without question the worst earthquake disaster. It did produce a tsunami, but not a great tsunami. Each one of these events has their distinctive set of parameters, and in one it may be ground-shaking damage, and in another it may be fire, and another it may be an enormous landslide or it could be a tsunami, or a combination of those things.

Japan has had numerous earthquakes as large as magnitude 8.5, and that may have been kind of their planning event. But it really points out the problem of dealing only with the historic record. Japan has records that go back a thousand years or longer — a much longer record than we have in the United States, where we really only have written records on the West Coast going back about 150 years, and we’ve only had actual seismic instruments going back about a hundred years.

So in order to get a sense of the long term hazard, you need to go into what we call paleoseismology, paleoseismic techniques, which use the geologic record of past events to interpret the full scale of what you might be dealing with. And that’s certainly how we know the most about the hazard in Cascadia [U.S. Pacfici Northwest]. It comes primarily from the paleotsunami and paleoseismic studies that have been done in Northern
There is evidence that what has happened in the last thousand years is not necessarily the worst-case event.”
California, Oregon, Washington, and British Columbia. Some of those studies have certainly been done in Japan as well, and several years ago Japanese researchers published a paper that suggested the past tsunamis were much, much larger than any that had been observed in historic times. The sand sheets particularly in some areas of Hokkaido and northern Honshu extended much, much further inland than the historic record suggested. And there certainly has been some discussion that earthquakes as large as low- to mid- magnitude 9 were possible in that area. I don’t know if that information had been incorporated into any of the planning for this event. But there was certainly some evidence that suggested that what had happened in the last thousand or so years was not necessarily the worst-case event.

e360: The paleo record shows sand sheets that come in from the sea and spread over the land?

Dengler: Exactly. And the problem with that evidence is that, first of all, it’s ephemeral — it will tend to be eroded. If you imagine the Pacific Northwest, we have a lot of rains. We have a lot of floods. So preserving it is difficult. And interpreting it can be difficult as well, and so there are a number of people who have become paleotsunami experts and by analyzing not only the sand, but looking at the micro fossils in it, you can look at the diatoms and forams and interpret them as coming from the ocean.

e360: In the historical record, you’ve got the Meiji-Sanriku tsunami and earthquake of 1896?

Dengler: Yes. So this was in the time of the Meiji emperors, so that’s how we often describe it.

e360: It originated in roughly the same area as the recent tsunami?

Lori Dengler
Asahi Shimbun/USGS
It took nearly 24 hours for tsunami waves created by the Chilean earthquake of 1960 to reach the Japanese coast.
Dengler: Roughly the same area. That earthquake was quite different from this earthquake. It was what we call a tsunami earthquake. We use the term tsunami earthquake when the tsunami is much bigger than you would expect for either the size of the earthquake or the strength of the ground shaking. So in that particular case people didn’t feel the earthquake very strongly. It was weak shaking that lasted for a long time, but it didn’t knock things down. You had this earthquake, which didn’t feel very strong, and people didn’t tend to pay a lot of attention to it and unfortunately the tsunami was very large. In Japan there is an oral history that says that if you feel the earthquake you go to high ground. And when you have these tsunami earthquakes you just don’t tend to be as alarmed by the shaking. So one of the things that I always tell people is pay attention to how long the shaking lasts. It may not feel all that strong, but if you count ground shaking that lasts 30 seconds or longer, then that’s your warning and you really do need to evacuate.

e360: And in the 1896 tsunami, virtually all the deaths were from the tsunami?

Dengler: There was no damage at all from the earthquake. It was entirely the tsunami.

e360: Were the same coastal regions that were hit two weeks ago also hit in the 1896 tsunami?

Dengler: There was a lot of overlap. And the 869 Tohoku tsunami affected many of the same areas, as well.

e360: And was there an estimate of deaths back then?

Dengler: The estimate was over 1,000 deaths in 869 and that flooded a castle in Sendai, so really the same areas flooded... One of the things that is going to be emerging from this recent tsunami is the focus has been on the failures, because clearly when you have 10,000 or maybe even 20,000 deaths, it’s a catastrophe. But there were hundreds of thousands of people exposed and there are certainly successes as well. And we just haven’t been hearing about them yet.

e360: Successes in terms of warnings...

Dengler: Of people successfully evacuating and surviving. I think we are going to find out that many more people lived than died that were in the tsunami area, and that’s quite different than what happened in the 2004 Indian Ocean tsunami, where virtually everybody that was in the inundation zone died because they were unaware of the natural warning signs of a tsunami, and at places further away from the source, in Thailand and in Sri Lanka, there was no kind of warning system. So I’m sure that there will be many successes that will come out of this and that’s important to remember.

e360: In North America, is there a similar plate structure off of Cascadia and Northern California so that you could have an earthquake and tsunami of similar intensity in the Pacific Northwest?

Dengler: Yes. And in fact we know perhaps the most about the potential for such an earthquake and tsunami from the written records in Japan. On January 26, 1700 we had a very similar rupture in the Pacific Northwest. It probably extended from south of Eureka, in northern California, up into about the middle of Vancouver Island, Canada. And given that length and given what we know about the Cascadia subduction zone, it was probably about a magnitude 9. The earthquake rupture caused the same kind of phenomenon, with permanent deformation of the
At the top of the list of things we need to work on is public awareness and public education.”
coastlines, killing many forests of western red cedar, redwood trees, pines, and spruce. The western red cedar, though, is a particularly important tree because it doesn’t rot very quickly and there are still today stands of ghost forests, these western red cedar that died in that event. Because there are still living trees from the same grove that were a little higher up, it is possible using the science of dentrochronology [reading tree rings] to actually create the time history of those trees and when they died. If you’re really careful and work on the roots, you can actually figure out the death date of those trees. That was done in southern Washington State and they found seven trees they could actually get a good death date on. And of those seven trees, six of them put on 1699 growth rings and did not put on 1700 growth rings. And as I said from the Japan written records, the tsunami came on January 26, 1700.

In Japan in 1700, we’re in the height of the Togakawa Shogunate, a very stable period in Japan, which means the bureaucrats are writing down records. Lots of taxes were being paid to the Shogun, and the taxes are basically paid as rice, and the rice gets stored in warehouses close to rivers and close to ports. And so we’ve got these reports of the tsunami coming in and it wiped out so many bags of rice and it came up this high. We can actually get a pretty good estimate of how high the water came in 1700 and when it arrived. And, from that, you can actually do numerical modeling that also says you basically need a magnitude 9 earthquake in order to produce that size of a tsunami. Both sides of the ocean, we give and take to each other.

e360: And how far off the Cascadia Coast was this fault line from 1700?

Dengler: It was the edge or the Cascadia subduction zone, which is defined by the continental shelf. So you can see that it is very close to the northern California coast. It is only about 50 miles off the coast. By the time you get off the Washington coast, it’s over a hundred miles off the coast. So we would expect when that fault system ruptures, the first surges are going to arrive on the northern California coast in as little as 10 minutes after the earthquake rupture. By the time you get up to the Washington coast you are probably dealing with closer to 20 minutes, unless the ground shaking also triggers a submarine landslide much closer to the coast, in which case a secondary tsunami could arrive even more quickly.

e360: So if you had a similar event to the 1700 tsunami off of Eureka and the Cascadia Coast, you could be looking at death and destruction on a scale of what just occurred in Japan?

Dengler: There are of course lots of uncertainties and the actual character of the rupture and the frequency of ground shaking is a huge unknown. We don’t have the exposure in terms of population [right on the coast] that that part of Japan had. We don’t have a Sendai that has hundreds of thousands of people potentially exposed. We do have lots of small communities that on a lovely summer day can have tens of thousands of people on the beach. So, you know, 4th of July, if it’s not foggy on the Oregon and Washington coast, you can have certainly many people exposed. And it’s something that we’re actively working on. We have tsunami hazard maps. We have hazard zone signs. Most of our coast is actually at fairly high elevations so it turns out most of the places where people live are actually not at great risk.

e360: What about San Francisco?

Dengler: Well San Francisco is probably not at great risk of a tsunami. Hawaii is going to get more damage from [a Cascadia] tsunami than San Francisco will. Alaska will get damage from our tsunami and Japan will get damage from our tsunami. So this event certainly has the capacity to cause significant problems throughout the Pacific basin. San Francisco is going to escape the worst of it because it’s on the good end of the rupture.

e360: How well would you say the U.S. and Canada are prepared for a big tsunami that would strike Hawaii and the West Coast?

Dengler: I’m sure there are going to be many hearings in the coming months that will be addressing this topic. Actually a number of [Congressional] hearings were held back in 1993 and 1994 after we had a 7.2 earthquake here on the North Coast on that same subduction zone fault system, but it was just the southern-most corner of it. But that earthquake was enough to really get people’s attention. As a result, the U.S. launched the National Tsunami Hazard Mitigation Program in 1996, funded solely by earmarks, until the 2004 Indian Ocean tsunami, when suddenly the funding jumped way up. The National Academy of Sciences and the National Research Council just finished a two-year study of the U.S. tsunami program that looked very, very carefully at all aspects of U.S. tsunami preparedness. It has certainly improved significantly from where it was a decade ago, but there are a number of areas that we need to continue to work on.


Anatomy of a Nuclear Crisis:
A Chronology of Fukushima

Anatomy of a Nuclear Crisis:
A Chronology of Fukushima
The world’s worst nuclear reactor mishap in 25 years was caused by a massive natural calamity but compounded by what appear to be surprising mistakes by Japanese engineers. The result has been a fast-moving disaster that has left officials careening from one emergency to the next.
I would say top on that list is public awareness and public education. There is no question when you are dealing in the near-source region of a great earthquake everybody needs to understand that they can’t wait for an official warning. They can’t get in their car and drive. They need to be able to self-evacuate immediately. And we have a number of areas where there’s no high ground. An example is the Long Beach Peninsula in Washington State, where you have this big long sand pit with no high ground. We need to really be looking at issues of creating high ground, of vertical evacuation. It is going to be very interesting to see how Japanese vertical evacuation sites fared. I’ve heard some stories of the water being higher and completely overtopping some of them. But it’s too early right now to know. But if a Cascadia earthquake and tsunami were to happen this afternoon, we would certainly have major damage and we would lose lives due to the tsunami. I would like to think we would lose far fewer today than if it happened 20 years ago. So this is a work in progress, and we have a lot still to do.

e360: I think what’s been so stunning to everyone was that here’s this incredibly developed country [Japan] totally aware of the dangers it faces, and it still got absolutely creamed. It’s shocking.

Dengler: Absolutely. It’s extremely humbling and I’m not going to predict what Mother Nature will do next. But let’s just say she holds all the cards and is the last at bat.

POSTED ON 22 Mar 2011 IN Business & Innovation Climate Oceans Science & Technology Science & Technology Asia 


Excellent Interview.My knowledge on the subject has gone up through this informative interview.

Dr.A.Jagadeesh Nellore(AP),India

Posted by Dr.A.Jagadeesh on 26 Mar 2011

It appears to me from all that I have read on the destruction..ON LAND, at least as a result of the Tsunami, 'escaping' inland, at least for immediate coastal residents is marginal at best. The speed of the wave as opposed to the speed of the 'warning systems' is far faster.

That said, why not have a nautical system available that will transport whomever they can, within the timeframe available, safely out, far off shore, past the incomming Tsunami? Going the other way, roads will most likely be blocked by traffic, trying to flee as well. All roads heading inland.

It would also seem that most of those who died, had no clue of the impending danger. It should also be understood that relative to a forty or higher Tsunami, preventing total destruction is almost impossible along the coastal towns and villages.

Posted by Mike O'Neill on 12 Apr 2011

Comments have been closed on this feature.



In Fukushima, A Bitter Legacy
Of Radiation, Trauma and Fear

Five years after the nuclear power plant meltdown, a journey through the Fukushima evacuation zone reveals some high levels of radiation and an overriding sense of fear. For many, the psychological damage is far more profound than the health effects.

Rocky Flats: A Wildlife Refuge
Confronts Its Radioactive Past

The Rocky Flats Plant outside Denver was a key U.S. nuclear facility during the Cold War. Now, following a $7 billion cleanup, the government is preparing to open a wildlife refuge on the site to the public, amid warnings from some scientists that residual plutonium may still pose serious health risks.

Sticker Shock: The Soaring Costs
Of Germany’s Nuclear Shutdown

German Chancellor Angela Merkel’s 2011 decision to rapidly phase out the country’s 17 nuclear power reactors has left the government and utilities with a massive challenge: How to clean up and store large amounts of nuclear waste and other radioactive material.

In Post-Tsunami Japan, A Push
To Rebuild Coast in Concrete

In the wake of the 2011 tsunami, the Japanese government is forgoing an opportunity to sustainably protect its coastline and is instead building towering concrete seawalls and other defenses that environmentalists say will inflict serious damage on coastal ecosystems.

Are Fast-Breeder Reactors
A Nuclear Power Panacea?

Proponents of this nuclear technology argue that it can eliminate large stockpiles of nuclear waste and generate huge amounts of low-carbon electricity. But as the battle over a major fast-breeder reactor in the UK intensifies, skeptics warn that fast-breeders are neither safe nor cost-effective.


MORE IN Interviews

Republican Who Led EPA Urges
Confronting Trump on Climate

by christian schwägerl
William K. Reilly, a Republican and one-time head of the EPA, is dismayed that a climate change skeptic has been named to lead his former agency. But in a Yale e360 interview, he insists environmental progress can be made despite resistance from the Trump administration.

How Costa Rica Is Moving
Toward a Green Economy

by diane toomey
With nearly all its electricity generated from renewables, Costa Rica has now set its sights on decarbonizing the transportation sector. In an interview with Yale Environment 360, green-energy activist Monica Araya explains how her country can wean itself entirely off fossil fuels.

The Legacy of the Man Who
Changed Our View of Nature

by diane toomey
The 19th-century German scientist Alexander von Humboldt popularized the concept that the natural world is interconnected. In a Yale e360 interview, biographer Andrea Wulf explains how Humboldt’s vision helped create modern environmentalism.

From Obama’s Top Scientist,
Words of Caution on Climate

by elizabeth kolbert
As President Obama’s chief science adviser, John Holdren has been instrumental in developing climate policy. In an interview with Yale e360, Holdren talks about the urgency of the climate challenge and why he hopes the next administration will not abandon efforts to address it.

An Unusually Warm Arctic Year:
Sign of Future Climate Turmoil?

by fen montaigne
This year will almost certainly go down as the warmest on record in the Arctic, with autumn temperatures soaring 36 degrees F above normal. In a Yale e360 interview, climatologist Jennifer Francis explains why a swiftly warming Arctic may have profound effects on global weather.

Are Trees Sentient Beings?
Certainly, Says German Forester

by richard schiffman
In his bestselling book, The Hidden Life of Trees, Peter Wohlleben argues that to save the world’s forests we must first recognize that trees are “wonderful beings” with innate adaptability, intelligence, and the capacity to communicate with — and heal — other trees.

At Standing Rock, A Battle
Over Fossil Fuels and Land

by katherine bagley
The Native American-led protest against the Dakota Access pipeline has gained global attention. In an e360 interview, indigenous expert Kyle Powys Whyte talks about the history of fossil fuel production on tribal lands and the role native groups are playing in fighting climate change.

The Moth Snowstorm: Finding
True Value in Nature’s Riches

by roger cohn
Journalist Michael McCarthy has chronicled the loss of wildlife in his native Britain and globally. In an interview with Yale Environment 360, he talks about why he believes a new defense of the natural world is needed – one based on the joy and spiritual connection it provides for humans.

What’s Killing Native Birds in
The Mountain Forests of Kauai?

by diane toomey
Biologist Eben Paxton is sounding the alarm about the catastrophic collapse of native bird populations on the Hawaiian island of Kauai. His group's research has uncovered the culprit: disease-carrying mosquitoes that have invaded the birds' mountain habitat.

Exploring How and Why
Trees ‘Talk’ to Each Other

by diane toomey
Ecologist Suzanne Simard has shown how trees use a network of soil fungi to communicate their needs and aid neighboring plants. Now she’s warning that threats like clear-cutting and climate change could disrupt these critical networks.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.


An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.