28 Apr 2014: Analysis

Why Wave Power Has Lagged
Far Behind as Energy Source

Researchers have long contended that power from ocean waves could make a major contribution as a renewable energy source. But a host of challenges, including the difficulty of designing a device to capture the energy of waves, have stymied efforts to generate electricity from the sea.

by dave levitan

It’s not difficult to imagine what wind energy looks like — by this point we have all seen the towering turbines dotting the landscape. The same goes for solar power and the panels that are spreading across rooftops worldwide. But there is another form of renewable energy, available in huge quantities, that doesn’t really call to mind anything at all: What does wave power technology look like?

Wind and solar power have taken off in the past decade or two, as costs have come down rapidly and threats from climate change have made clear
Large amounts of money and research are required for wave power to catch up with wind and solar.
the need to transition away from fossil fuels. Meanwhile, numerous studies have concluded that wave power — and to a lesser extent, tidal power — could contribute massive amounts to the overall energy picture. But while the industry has made halting progress, experts agree that it remains decades behind other forms of renewables, with large amounts of money and research required for it to even begin to catch up.

No commercial-scale wave power operations now exist, although a small-scale installation did operate off the coast of Portugal in 2008 and 2009. In February, U.S. corporate giant Lockheed Martin announced a joint venture to create the world’s biggest wave energy

View Gallery
Wave power buoy

Ocean Power Technologies, Inc.
A major wave power installation off Australia's coast will use this type of power-generating buoy.
project, a 62.5-megawatt installation slated for the coast of Australia that would produce enough power for 10,000 homes. Scotland, surrounded by the rough waters of the Atlantic and the North Sea, has become a hotbed of wave-energy research and development, with the government last year approving a 40-megawatt wave energy installation in the Shetland Islands.

But a central challenge has proven to be the complexity of harnessing wave power, which has led to a host of designs, including writhing snake-like attenuators, bobbing buoys, even devices mounted discreetly on the ocean floor that work by exploiting differences in pressure as a wave passes by. Some devices generate the electricity on the spot and transmit it via undersea cables to shore, while others pass the mechanical energy of the wave along to land before turning it into electrical energy. Which of these drastically divergent concepts might emerge as a winner is far from clear.

“We may not have even invented the best device yet,” said Robert Thresher, a research fellow at the National Renewable Energy Laboratory.

From a technical point of view, operating in the ocean is far more difficult than on land; building offshore wind installations, for example, tends to be significantly more expensive than constructing wind farms onshore. Saltwater is a hostile environment for devices, and the waves themselves offer a challenge for energy harvesting as they not only roll past a device but also bob up and down or converge from all sides in confused seas. This provides enticing opportunities for energy capture, but a challenge for optimum design.

“I’d like to be optimistic, but I don’t think realistically I can be,” said George Hagerman, a research associate in the Virginia Tech University’s Advanced Research Institute and a contributor to the U.S. Department of Energy’s assessment of wave energy’s potential. “You’ve got all those cost
A theme among wave power experts is that wave energy is where wind energy was three decades ago.
issues of working in the ocean that offshore wind illustrates, and then you’ve got [an energy] conversion technology that really no one seems to have settled on a design that is robust, reliable, and efficient. With wind, you’re harnessing the energy as a function of the speed of the wind. In wave energy, you’ve not only got the height of the wave, but you’ve got the period of the wave, so it becomes a more complicated problem.”

A recurring theme among wave power experts is that wave energy is where wind energy was three decades ago. At that time, engineers had not settled on the optimal design for wind turbines, but decades of ensuing research have resulted in highly sophisticated turbine designs. With wave power, some research occurred after the Arab oil embargo of the 1970s, but since then government and commercial research and development into wave power has paled compared to wind and solar energy.

As with any energy source, the fundamental roadblock toward more widespread deployment is cost. So far, the wave energy field is filled with small companies picking off small amounts of government funding where they can. It will likely require the participation of some large companies, such as GE or Siemens (both major manufacturers of wind turbines) before wave power really gets rolling, according to numerous experts. Those companies may be waiting for the technology to sort itself out before investing, a common dilemma in any nascent field.

In spite of the challenges inherent to the medium, the industry is progressing, albeit slowly. There are a few small wave farms and pilot projects in the water, including Pelamis Wave Power’s first-ever wave farm off the coast of Northern Portugal. That company has a few megawatt-scale wave farms planned, while others, like Ocean Power Technologies, continue to deploy test devices to improve buoy-based technology.

Australian company Carnegie Wave plans to commission a “commercial scale” installation near Perth later this year, using a fully submerged device that uses wave power to pump water to shore for conversion to electricity. And there are signs that big-company buy-in is starting, as evidenced by
Experts say the industry need not settle on one device before substantial progress occurs.
Lockheed Martin’s Australia project, which will use a buoy technology that generates electricity from the rising and falling of waves.

Another company, M3 Wave, plans to install a new device just off the Oregon coast this summer. M3 will be using a pressure-based device, sitting out of sight on the ocean floor. As a wave passes over it, air inside the device is pushed by pressure changes from one chamber to another, spinning a turbine to generate electricity.

So far, projects producing only a handful of megawatts have actually made it into the water, but experts say the industry needn’t settle on one device before substantial progress occurs.

“I wouldn’t be surprised if what we eventually find is there will be a device that we use in deeper water, and a device that we use nearer the shore,” said Belinda Batten, a professor at Oregon State University and the director of the Northwest National Marine Renewable Energy Center.

The process to refine those technologies is ongoing. The European Marine Energy Centre in Scotland’s Orkney Islands allows companies to connect their devices to existing infrastructure and cabling to test their electricity-generating capabilities and identify problems. Batten said her center based at Oregon State is in the permitting and approval process for a counterpart testing center that will enable companies to connect to the existing electricity grid for testing purposes.

The location of those two testing sites is no accident, as they are situated in maritime regions known for energetic waves. The Pacific Northwest and
The Pacific Northwest and Alaska will likely have a monopoly on the first U.S. wave projects.
Alaska will likely have a monopoly on the U.S.’s first generation of wave projects, while in Europe the United Kingdom — Scotland in particular — is focusing heavily on wave energy development. The U.K. government says the country could potentially get as much as 75 percent of its energy needs from the waves and tides combined; the U.S. Department of Energy, meanwhile, estimates that wave power in the U.S. could generate as much 1,170 terawatt-hours per year, which is equivalent to more than one quarter of all U.S. electricity consumption.

Thresher of the National Renewable Energy Laboratory says that wave power’s first markets may well be in remote places like Alaska, where energy is expensive because of reliance on costly imported fuels

MORE FROM YALE e360

Will Offshore Wind Finally
Take Off on U.S. East Coast?

offshore wind
After years of delays and legal battles, several offshore wind projects seem poised to be launched off the U.S. East Coast. But the lack of stable government incentives and tax credits may continue to hobble an industry that already has a strong foothold in Europe.
READ MORE
like diesel. “There has been an interest in some of the island communities,” Thresher said.

With the industry starting to develop larger projects and continuing to test myriad devices in search of the best designs, does that mean wave power could finally be on its way, just as wind was 25 years ago?

Jason Busch, executive director of the Oregon Wave Energy Trust — a non-profit group dedicated to helping advance the industry — said that there are too many variables, such as the price of natural gas or eventual passage of a carbon tax, to apply the experience of wind or solar power to a different technology and time period.

“In my opinion the biggest issue is the failure to price carbon,” said Busch. “As long as we refuse to internalize the cost of greenhouse gases, then we’re playing on an unlevel playing field.”

In spite of the hurdles, though, he thinks that steady technical progress will lead to substantial amounts of grid-connected wave power by 2035. “In the course of 10 years we have gone from having zero wave energy technologies that are even remotely viable to having several in the water, and on the cusp of commercial viability,” Busch said. “We’re making some really good progress.”



POSTED ON 28 Apr 2014 IN Biodiversity Business & Innovation Energy Forests Policy & Politics Science & Technology Australia Europe North America North America 

COMMENTS


I think you missed the largest one actually being built right now: http://www.seabased.com/en
Posted by Martin on 28 Apr 2014


Dave,

You mention that GE and Siemens are not committing to the current state-of-play — I think you will find that RWE have though. There has been work off one of the two UK hotspots (off Anglesey - the other being west Wales around the Milford Haven waterway) and they have partnered with Marine Current Turbines in work that has been ongoing to harness tidal and wave energy — http://www.marineturbines.com/3/news/article/44/marine_current_turbines_kicks_off_first_tidal_array_for_wales

The difference between Wales and Scotland is that Scotland has the European work going on, whereas Wales is largely the small private businesses you mention. One big difference is that if you widen the focus to bring tidal back in, the big statistic is that the Severn has the 2nd highest tidal range in the world.

There is commercial work about to commence to build the first tidal (lagoon) generating in Swansea Bay, and it was interesting that your article didn't really touch on this?

The debate in Wales (http://bit.ly/1hNTEt5) centres on whether we should be pursuing the Severn barrage or developing a series of tidal lagoons around both banks of the Severn and on into Cardigan Bay? Or perhaps both — tidal and wave — and the whole Severn barrage debate has seen the technology of the turbines develop from being uni- to bi-directional over recent years. (The main issue for the Severn is having to close the river to shipping whilst the barrage is built.)

Regards,
Nigel D

(btw - I read this in Monday's online Guardian - at www.guardian.co.uk )
Posted by Nigel Davies on 29 Apr 2014


Dave,

The other link I should have forwarded you is this one — http://bit.ly/1hO0P4n — which shows how the Welsh Government is getting behind the tidal & wave energy work going on around our coasts.

Regards,
Nigel D
Posted by Nigel Davies on 29 Apr 2014


One of the best articles I have read on the subject. This area is one of the last frontiers no doubt and the challenges you describe are real. The confused sea is an incredible system where wave energy sorts themselves naturally out in about 80 meters and it very dynamic and this creates havoc for anyone wanting to harvest it. In the 1980s researchers discovered how stingy wave energy is being proven now and actually that fact is huge positive for the future of reasonable harvesting technology. A ten second wave would travel around the world 3 times and only loose 10\% of its energy. So its not fooled by most of the famous attempts so far.


Posted by gary ross on 30 Apr 2014


You mention tidal or current power only in passing. Ocean Renewable Power Company (www.orpc.co) is successfully running a small project off Lubeck, eastern Maine, with DOE backing, and will soon upgrade to a five megawatt system there. The turbine blades look like a hand land mower's. Other projects are slated for Cook Inlet in Alaska, the Bay of Fundy in Nova Scotia, and southern Chila. The major challenge for this technology is to avoid damaging large marine life.
Posted by Tom Parrett on 01 May 2014


Nicely constructed article, but it lacked coverage of the new and inventive technology that is being developed around the world. An example of this is the Checkmate, a US-patented Anaconda device, currently the subject of an independent technical report commissioned by the UK Government's Dept of Climate Change in which consultants, US-headquartered Black and Veatch, confirm that tank testing of the device demonstrates the potential to deliver what the UK's Carbon Trust describes as "a step change" in the cost of energy. And it is cost of energy that should be the driver as we move forward.
Posted by paul auston on 01 May 2014


Thank you for the informative article. FYI, a wave energy company with significant backing by ABB is Seabased AB in Sweden. Their technology uses floating buoys connected to linear generators on the seafloor. Variable electricity is generated from each buoy and signals are electrically regulated using ABB inverter technology in underwater substations before being sent to shore. There are minimal moving parts and the complexity is left to the power electronics. I visited their demo wave farm in West Sweden and was impressed.
Posted by Michael Walmsley on 04 Jun 2014


You're right, in near future we will use wave power, the issue is how to gather a prospective design of a device with a dedicated sponsor company such as Siemens.

I already finished a design of a station device for generating a power by sea wave, to be located at coast not in deep ocean, with lower cost for wind turbine power generated 4-6 Mw. I will try to contact international companies in some
countries to give it a go.


Posted by Moud - Australia on 15 Jul 2014


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


dave levitanABOUT THE AUTHOR
Dave Levitan is a freelance journalist based in Philadelphia who writes about energy, the environment, and health. His articles have been published by Scientific American, Discover, IEEE Spectrum, Grist, and others. In previous articles for Yale Environment 360, he has written about the outlook for offshore wind projects on the U.S. East Coast and the large-scale solar energy industry.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


Can Waterless Dyeing Processes
Clean Up the Clothing Industry?

One of the world’s most polluting industries is the textile-dyeing sector, which in China and other Asian nations releases trillions of liters of chemically tainted wastewater. But new waterless dyeing technologies, if adopted on a large scale, could sharply cut pollution from the clothing industry.
READ MORE

New Desalination Technologies
Spur Growth in Recyling Water

Desalination has long been associated with one process — turning seawater into drinking water. But a host of new technologies are being developed that not only are improving traditional desalination but opening up new frontiers in reusing everything from agricultural water to industrial effluent.
READ MORE

A Blueprint to End Paralysis
Over Global Action on Climate

The international community should stop chasing the chimera of a binding treaty to limit CO2 emissions. Instead, it should pursue an approach that encourages countries to engage in a “race to the top” in low-carbon energy solutions.
READ MORE

UN Panel Looks to Renewables
As the Key to Stabilizing Climate

In its latest report, the UN's Intergovernmental Panel on Climate Change makes a strong case for a sharp increase in low-carbon energy production, especially solar and wind, and provides hope that this transformation can occur in time to hold off the worst impacts of global warming.
READ MORE

New Satellite Boosts Research
On Global Rainfall and Climate

Although it may seem simple, measuring rainfall worldwide has proven to be a difficult job for scientists. But a recently launched satellite is set to change that, providing data that could help in understanding whether global rainfall really is increasing as the planet warms.
READ MORE

 

MORE IN Analysis


Peak Coal: Why the Industry’s
Dominance May Soon Be Over

by fred pearce
The coal industry has achieved stunning growth in the last decade, largely due to increased demand in China. But big changes in China’s economy and its policies are expected to put an end to coal’s big boom.
READ MORE

Obama’s New Emission Rules:
Will They Survive Challenges?

by michael b. gerrard
The sweeping nature of President Obama’s proposed regulations limiting carbon dioxide emissions from coal-fired power plants is likely to open his initiative to serious legal challenges. To date, however, the courts have given the federal government wide latitude in regulating CO2 under the Clean Air Act.
READ MORE

On the Road to Green Energy,
Germany Detours on Dirty Coal

by fred pearce
While Germany continues to expand solar and wind power, the government’s decision to phase out nuclear energy means it must now rely heavily on the dirtiest form of coal, lignite, to generate electricity. The result is that after two decades of progress, the country’s CO2 emissions are rising.
READ MORE

UN Panel Looks to Renewables
As the Key to Stabilizing Climate

by fred pearce
In its latest report, the UN's Intergovernmental Panel on Climate Change makes a strong case for a sharp increase in low-carbon energy production, especially solar and wind, and provides hope that this transformation can occur in time to hold off the worst impacts of global warming.
READ MORE

Will Increased Food Production
Devour Tropical Forest Lands?

by william laurance
As global population soars, efforts to boost food production will inevitably be focused on the world’s tropical regions. Can this agricultural transformation be achieved without destroying the remaining tropical forests of Africa, South America, and Asia?
READ MORE

New Satellite Boosts Research
On Global Rainfall and Climate

by nicola jones
Although it may seem simple, measuring rainfall worldwide has proven to be a difficult job for scientists. But a recently launched satellite is set to change that, providing data that could help in understanding whether global rainfall really is increasing as the planet warms.
READ MORE

UN Climate Report Is Cautious
On Making Specific Predictions

by fred pearce
The draft of the latest report from the Intergovernmental Panel on Climate Change warns that the world faces serious risks from warming and that the poor are especially vulnerable. But it avoids the kinds of specific forecasts that have sparked controversy in the past.
READ MORE

Rebuilding the Natural World:
A Shift in Ecological Restoration

by richard conniff
From forests in Queens to wetlands in China, planners and scientists are promoting a new approach that incorporates experiments into landscape restoration projects to determine what works to the long-term benefit of nature and what does not.
READ MORE

In the Pastures of Colombia,
Cows, Crops and Timber Coexist

by lisa palmer
As an ambitious program in Colombia demonstrates, combining grazing and agriculture with tree cultivation can coax more food from each acre, boost farmers’ incomes, restore degraded landscapes, and make farmland more resilient to climate change.
READ MORE

Soil as Carbon Storehouse:
New Weapon in Climate Fight?

by judith d. schwartz
The degradation of soils from unsustainable agriculture and other development has released billions of tons of carbon into the atmosphere. But new research shows how effective land restoration could play a major role in sequestering CO2 and slowing climate change.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 PHOTO GALLERY

“Peter
Photographer Peter Essick documents the swift changes wrought by global warming in Antarctica, Greenland, and other far-flung places.
View the gallery.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

OF INTEREST



Yale