06 Sep 2016: Analysis

How Climate Change Could Jam
The World's Ocean Circulation

Scientists are closely monitoring a key current in the North Atlantic to see if rising sea temperatures and increased freshwater from melting ice are altering the “ocean conveyor belt” — a vast oceanic stream that plays a major role in the global climate system.

by nicola jones

Mariusz Kluzniak/Flickr
Melting ice flows into the northern Atlantic Ocean in eastern Greenland.

Susan Lozier is having a busy year. From May to September, her oceanographic team is making five research cruises across the North Atlantic, hauling up dozens of moored instruments that track currents far beneath the surface. The data they retrieve will be the first complete set documenting how North Atlantic waters are shifting — and should help solve the mystery of whether there is a long-term slowdown in ocean circulation. “We have a lot of people very interested in the data,” says Lozier, a physical oceanographer at Duke University.

A similar string of moorings across the middle of the Atlantic, delving as deep as 3.7 miles from the Canary Islands to the Bahamas, has already detected a disturbing drop in this ocean’s massive circulation pattern. Since those moorings were installed in 2004, they have seen the Atlantic current wobble and weaken by as much as 30 percent, turning down the dial on a dramatic heat pump that transports warmth toward northern Europe. Turn that dial down too much and Europe will go into a deep chill.

Researchers have been worried about an Atlantic slowdown for years. The Atlantic serves as the engine for the planet’s conveyor belt of ocean currents: The massive amount of cooler water that sinks in the North Atlantic stirs up that entire ocean and drives currents in the Southern and Pacific oceans, too. “It is the key component” in global circulation, says Ellen Martin, a paleoclimate and ocean current researcher at the University of Florida. So when the Atlantic turns sluggish, it has worldwide impacts: The entire Northern Hemisphere cools, Indian and Asian monsoon areas dry up, North Atlantic storms get amplified, and less ocean mixing results in less plankton and other life in the sea.

Paleoclimatologists have spotted times in the deep past when the current slowed quickly and dramatically, cooling Europe by 5 to 10 degrees C (10 to 20 degrees F) and causing far-reaching impacts on climate.
A single Atlantic Ocean current system accounts for up to a quarter of the planet’s heat flux.
Modelers have tried to predict how human-caused climate change might impact the Atlantic current, and how its slowdown might muck with the world’s weather even more. But years of intensive peering at this question haven’t yet provided much clarity.

Now, debate is raging about whether the recent Atlantic slowdown has been triggered by climate change, or is just part of a normal cycle of fast and slow currents. New studies in the last few years and months have come out supporting both prospects. The new data from the north, Lozier and others hope, might help to sort things out.


When the Hollywood blockbuster “The Day After Tomorrow” threw the Atlantic Ocean current into the popular spotlight in 2004, researchers laughed at its portrayal of an ocean current shutdown. In the movie, the world was plunged into a new ice age in a matter of days, with cold fronts literally chasing people at a sprint. But the disaster at the core of the film was based in some reality.

A huge amount of heat is moved around our planet by a single ocean current system — the Atlantic Meridional Overturning Circulation (AMOC) — which accounts for up to a quarter of the planet’s heat flux. The system is driven by density: waters that are cold or salty are denser and so dive down to the ocean floor. As a result, today, cold waters sink in the North Atlantic and flow southwards, while warm tropical waters at the surface flow northwards in the Gulf Stream, making northern Europe unusually mild for its latitude. But if northern waters get too warm, or too fresh from melting ice, then they can stop being dense enough to sink. That causes a major traffic jam for the water attempting to move north, and the system grinds to a halt.

Ocean Conveyor Belt

The global ocean conveyor belt.

This has happened before. Researchers have spotted dramatic AMOC slowdowns of more than 50 percent during the last glaciation some 100,000 to 10,000 years ago, over a period perhaps as short as decades. The theory —which is being debated — is that as ice sheets got too big to stay stable, armadas of icebergs broke off, floated out to sea, and melted; even though the waters were chilly, the huge influx of freshwater made them less dense, and so they stopped up the currents. Looking further back in time to the last interglacial period about 120,000 years ago, which is more like today’s interglacial world, is trickier. But a study of some proxy measurements has shown that there may have been rapid slowdowns in the last interglacial, too.

“It seems to be a fairly stable system, until we push it just the right amount and then we’re in terrible shape,” says Martin. “I don’t think you want to play with the AMOC.”

The last review by the Intergovernmental Panel on Climate Change concluded that the AMOC is very likely to slow by the end of the century, perhaps by as much as 54 percent in the worst-case scenario, where emissions keep going up and global temperatures rise about 4 degrees C. But the range of possible slowdowns in these predictions is huge, starting at just 1 percent for an emissions-restricted world.

If the North Atlantic current slows dramatically, then the entire Northern Hemisphere would cool; a complete collapse of the current could even reverse global warming for about 20 years. But the heat that ocean currents fail to transport northwards would make parts of the Southern Hemisphere even hotter. And a cooler north isn’t necessarily good news.
The jury is still out. Weakening is a possibility, but it hasn’t been proven yet,' says one scientist.
Should the AMOC shut down, models show that changes in rainfall patterns would dry up Europe’s rivers, and North America’s entire Eastern Seaboard could see an additional 30 inches of sea level rise as the backed-up currents pile water up on East Coast shores.

But to pin down what the AMOC is going to do, researchers need to better understand what it’s doing right now. And that is proving tricky.


The problem researchers face is that the AMOC is extremely capricious, wobbling around more from year to year than the expected shift to date from global warming. Just like temperature or sea level records, this makes for a very noisy signal in which it’s hard to see long-term trends. “It’s analogous to the early difficulty seeing a global warming signature,” says Columbia University paleoclimatologist and oceanographer Jerry McManus. “Now that signature is compelling, but it took a while to see it clearly. Now that’s happening with AMOC. ”

The first string of moorings put in the ocean to investigate this current — the so-called RAPID array, with more than a dozen moorings from Florida to the Canary Islands — were deployed in 2004. They have shown a drop in water flow from 20 sverdrups (or million cubic meters of water per second) to 15 sverdrups over a decade. But the variability is huge. In 2009 to 2010, for example, the current was particularly sluggish for some reason, with water transport dropping by about a third. That helped to make the next winter the coldest for the United Kingdom since 1890, with heavy snowfalls and travel chaos. And from New York to Newfoundland, sea levels were boosted by five inches. Lozier’s data from the northern part of the ocean — in an array called OSNAP — will add a missing piece to the puzzle of what the current is up to.

A pocket of cold water has formed in the northern Atlantic Ocean from melting Arctic and Greenland ice. Scientists say it has the potential to disrupt ocean circulation.

Actual measurements of the AMOC across the ocean only date back to 2004; to get a longer-term picture, researchers have to rely on other measurements to infer ocean current. Last year, Stefan Rahmstorf, of the Potsdam Institute for Climate Impact Research in Germany, grabbed media headlines with a paper looking at sea surface temperature as a proxy for current. That study argued that the Atlantic current has slowed more since 1975 than at any point in the last thousand years, creating an obvious chilly blob over the North Atlantic — one of the only spots on the planet that’s actually cooling. The slowdown started in about the 1930s, Rahmstorf says, strongly suggesting that mankind is to blame.

Others aren’t yet convinced. “The jury is still out,” says Lozier, who notes that sea surface temperature is a messy proxy for current. “Weakening is a possibility, but it hasn’t been proven yet,” agrees Laura Jackson of the UK’s Met Office, who studies the AMOC.

Jackson’s own work in a special collection of papers about ocean circulation in Nature Geoscience this July showed that the AMOC has a decadal oscillation that naturally makes it swing from high to low flow. The mechanisms behind that aren’t well understood, but the upshot is that the slowdown seen since 2004 could just be due to one of these oscillations. It’s also possible that both things are true: There could be a decadal-scale oscillation sitting on top of a longer-term slowdown caused by climate change.

Another paper published in that same issue of Nature Geoscience, however, suggests that the amount of meltwater from Greenland isn’t yet enough to muck with the AMOC, despite the fact that Greenland is shedding nearly 300 billion tons of water a year. “It sounds like a lot of water, but it’s going over a big area,” says Jackson. Most of the freshwater pouring into the Labrador Sea seems to be swirled off down the Canadian coast by smaller ocean currents or eddies, instead of building up and stopping the AMOC.


Abrupt Sea Level Rise Looms
As Increasingly Realistic Threat

Abrupt Sea Level Rise Looms As Increasingly Realistic Threat
Ninety-nine percent of the planet's freshwater ice is locked up in the Antarctic and Greenland ice caps. Now, a growing number of studies are raising the possibility that as those ice sheets melt, sea levels could rise by six feet this century, and far higher in the next, flooding many of the world's populated coastal areas.

If the AMOC has really been slowing since about 1930 thanks to humanity’s influence on the climate, the exact way that is happening remains unclear. It could simply be the warming of Atlantic waters in critical areas, or the introduction of extra freshwater from increased rain. “We need another decade of observations, at least,” says Jackson, who also keenly awaits the OSNAP data sometime next spring. “Knowing what’s happening at high latitudes well help us determine which model is right,” she says. Meanwhile a third line of moorings in the South Atlantic, from Brazil to South Africa, should start to highlight what’s happening at the other end of the ocean.

For now, everyone awaits more data to see whether the AMOC is slowing down and, if so, what that will mean for the planet. “It’s complicated because there are feedbacks, and we don’t understand them all. Some could be positive; some could be negative,” says Jackson. But, Jackson adds, “The general feeling is, ‘Don’t panic.’”

POSTED ON 06 Sep 2016 IN Climate Climate Oceans Science & Technology Science & Technology Antarctica and the Arctic Antarctica and the Arctic Europe North America 


Great article.
Additional see related study

Ice melt, sea level rise and superstorms: evidence from paleoclimate data,
climate modeling, and modern observations that 2 °C global warming could
be dangerous

The modeling, paleoclimate evidence, and ongoing observations together
imply that 2 °C global warming above the preindustrial level could be
dangerous. Continued high fossil fuel emissions this century are predicted to
yield (1) cooling of the Southern Ocean, especially in the Western
Hemisphere (2) slowing of the Southern Ocean overturning circulation,
warming of the ice shelves, and growing ice sheet mass loss (3) slowdown
and eventual shutdown of the Atlantic overturning circulation with cooling of
the North Atlantic region (4) increasingly powerful storms and (5)
nonlinearly growing sea level rise, reaching several meters over a timescale
of 50–150 years. These predictions, especially the cooling in the Southern
Ocean and North Atlantic with markedly reduced warming or even cooling in
Europe, differ fundamentally from existing climate change assessments.
Posted by Chris Machens on 06 Sep 2016

Thanks for this interesting contribution. Question : I am surprising to not read something about the "el Nino" influency, and his impact on atlantic currents. Could you please tell me why ? Kind regards
Posted by CARBONNEL / oceanologist on 07 Sep 2016

Comprehensive and intriquin...eager for the next
report...glad I'm not right on the coast :) of MA.
Posted by Donna R. D'Fini on 09 Sep 2016

Why not set multiple fans under deep water surrounded by
fine net,(not to damage the fish or anything surrounding the
fan ) & change the current? There must be something we can
Posted by Kathryn Pierce on 10 Sep 2016

Thanks for this interesting piece. I appreciate the clarity as well as the contrasting (or at least confounding) information presented.
Posted by Martin M on 15 Sep 2016

As I was reading this blog, I continuously had
thoughts running through my mind "is this just
mother nature doing it's natural course", "how can
we really be sure its only climate change jamming up
the AMOC". It's frightening situation to think about if
the the AMOC does get jammed up and if the
different areas such as Northern Europe get colder
than normally. If the climate does change species will
begin to change, maybe decrease in population with
food supply shortage. i do agree with a previous
comment "why not multiple fans under deep water
surrounded by fine new". We may not have a full
understanding of what exactly is happening, but
there must be something we can do to lessen our
chances of jamming the the AMOC.
Posted by Michaela Mclaughlin on 17 Sep 2016

I really enjoy the witty banter within the context )
Posted by Edward on 11 Oct 2016

awesome read! love to hear more!!!! Any way you
can email back to discuss more about this topic??
Thanks, Quin :)
Posted by Quin Gist on 21 Nov 2016

I hear calls for action absent full understanding.
That is the single greatest contributor to the Law of
Unintended Consequences.
Posted by powers on 18 Dec 2016

This is what I learned in High School, 60 years ago in impoverished Romania:

1) The Gulf Stream is primarily driven by WINDS
2) Winds in turn are driven by earth's rotation about its axis
3) Ergo, to slow down/stop the Gulf Stream the earth must slow/stop its rotation

BTW: On Larry King's show MIT's professor R. Lindzen demolished Nye's (the science guy) assertion that the GW threatens the Gulf Stream using the same logic, see:


Posted by V. Adams on 20 Dec 2016

I don't know much and have been trying to learn more. I was curious though, if the AMOC slowed greatly or even stopped, to me it seems like the earth is correcting itself. If it cools the poles and adds ice, even though it causes problems in the middle, is just a way for the earth to survive and even correct itself. Maybe im an idiot but its like your body shutting organs down to keeps other parts alive. I guess my question to you is could the earth undo some of the damage we do through a changing AMOC?
Posted by jeff on 16 Jan 2017


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

nicola jonesABOUT THE AUTHOR
Nicola Jones is a freelance journalist based in Pemberton, British Columbia. With a background in chemistry and oceanography, she writes primarily about the physical sciences. She has written for Scientific American, Globe and Mail, New Scientist, and the journal Nature. Previously for Yale e360, she reported on how growing sea plants like kelp could help slow down ocean acidification.



How Far Can Technology Go
To Stave Off Climate Change?

With carbon dioxide emissions continuing to rise, an increasing number of experts believe major technological breakthroughs —such as CO2 air capture — will be necessary to slow global warming. But without the societal will to decarbonize, even the best technologies won’t be enough.

Republican Who Led EPA Urges
Confronting Trump on Climate

William K. Reilly, a Republican and one-time head of the EPA, is dismayed that a climate change skeptic has been named to lead his former agency. But in a Yale e360 interview, he insists environmental progress can be made despite resistance from the Trump administration.

The Legacy of the Man Who
Changed Our View of Nature

The 19th-century German scientist Alexander von Humboldt popularized the concept that the natural world is interconnected. In a Yale e360 interview, biographer Andrea Wulf explains how Humboldt’s vision helped create modern environmentalism.

A Drive to Save Saharan Oases
As Climate Change Takes a Toll

From Morocco to Libya, the desert oases of the Sahara's Maghreb region are disappearing as temperatures rise and rainfall decreases. Facing daunting odds, local residents are employing traditional water conservation techniques to try to save these ancient ecosystems.

An Unusually Warm Arctic Year:
Sign of Future Climate Turmoil?

This year will almost certainly go down as the warmest on record in the Arctic, with autumn temperatures soaring 36 degrees F above normal. In a Yale e360 interview, climatologist Jennifer Francis explains why a swiftly warming Arctic may have profound effects on global weather.


MORE IN Analysis

How Far Can Technology Go
To Stave Off Climate Change?

by david biello
With carbon dioxide emissions continuing to rise, an increasing number of experts believe major technological breakthroughs —such as CO2 air capture — will be necessary to slow global warming. But without the societal will to decarbonize, even the best technologies won’t be enough.

With Trump, China Emerges
As Global Leader on Climate

by isabel hilton
With Donald Trump threatening to withdraw from the Paris Agreement, China is ready to assume leadership of the world’s climate efforts. For China, it is a matter of self-interest – reducing the choking pollution in its cities and seizing the economic opportunities of a low-carbon future.

What a Trump Win Means
For the Global Climate Fight

by david victor
Donald Trump’s ascension to the presidency signals an end to American leadership on international climate policy. With the withdrawal of U.S. support, efforts to implement the Paris agreement and avoid the most devastating consequences of global warming have suffered a huge blow.

The Methane Riddle: What Is
Causing the Rise in Emissions?

by fred pearce
The cause of the rapid increase in methane emissions since 2007 has puzzled scientists. But new research finds some surprising culprits in the methane surge and shows that fossil-fuel sources have played a much larger role over time than previously estimated.

As Arctic Ocean Ice Disappears,
Global Climate Impacts Intensify

by peter wadhams
The top of the world is turning from white to blue in summer as the ice that has long covered the north polar seas melts away. This monumental change is triggering a cascade of effects that will amplify global warming and could destabilize the global climate system.

Wildlife Farming: Does It Help
Or Hurt Threatened Species?

by richard conniff
Wildlife farming is being touted as a way to protect endangered species while providing food and boosting incomes in rural areas. But some conservation scientists argue that such practices fail to benefit beleaguered wildlife.

What Would a Global Warming
Increase of 1.5 Degrees Be Like?

by fred pearce
The Paris climate conference set the ambitious goal of finding ways to limit global warming to 1.5 degrees Celsius, rather than the previous threshold of 2 degrees. But what would be the difference between a 1.5 and 2 degree world? And how realistic is such a target?

After Paris, A Move to Rein In
Emissions by Ships and Planes

by fred pearce
As the world moves to slash CO2 emissions, the shipping and aviation sectors have managed to remain on the sidelines. But the pressure is now on these two major polluting industries to start controlling their emissions at last.

Abrupt Sea Level Rise Looms
As Increasingly Realistic Threat

by nicola jones
Ninety-nine percent of the planet's freshwater ice is locked up in the Antarctic and Greenland ice caps. Now, a growing number of studies are raising the possibility that as those ice sheets melt, sea levels could rise by six feet this century, and far higher in the next, flooding many of the world's populated coastal areas.

How Nations Are Chipping
Away at Their Protected Lands

by richard conniff
Winning protected status for key natural areas and habitat has long been seen as the gold standard of conservation. But these gains are increasingly being compromised as governments redraw park boundaries to accommodate mining, logging, and other development.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

A look at how acidifying oceans could threaten the Dungeness crab, one of the most valuable fisheries on the U.S. West Coast.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.


An aerial view of why Europe’s per capita carbon emissions are less than 50 percent of those in the U.S.
View the photos.

e360 VIDEO

An indigenous tribe’s deadly fight to save its ancestral land in the Amazon rainforest from logging.
Learn more.

e360 VIDEO

Food waste
An e360 video series looks at the staggering amount of food wasted in the U.S. – a problem with major human and environmental costs.
Watch the video.

e360 VIDEO

Choco rainforest Cacao
Residents of the Chocó Rainforest in Ecuador are choosing to plant cacao over logging in an effort to slow deforestation.
Watch the video.

e360 VIDEO

Tribal people and ranchers join together to stop a project that would haul coal across their Montana land.
Watch the video.