09 May 2013: Report

How Mussel Farming Could
Help to Clean Fouled Waters

Along the shores of New York Harbor, scientists are investigating whether this ubiquitous bivalve can be grown in urban areas as a way of cleansing coastal waters of sewage, fertilizers, and other pollutants.

by paul greenberg

Not long ago, a boatful of shellfish researchers and I cruised downstream toward a most unlikely structure bobbing at the mouth of one of the most urban bodies of water on the planet.

The 20-foot by 25-foot form ahead of us was an experimental raft that scientists from the U.S. National Oceanic and Atmospheric Administration (NOAA) had placed at the mouth of New York City’s Bronx River last spring. Hanging beneath it were long, sock-like tendrils that had been seeded with Geukensia demissa, commonly known as ribbed mussels. The point of the two-year experiment was to see whether mussels would survive or even thrive given the industrial and organic effluent that flows from the Bronx into the greater New York Harbor. If the mussels did in fact prosper in this environment, it could have implications for how we might help clean up coastal waters in various parts of the world.

View gallery
Mussels

Mark S. Dixon/NOAA, NEFSC
The ribbed mussel was selected for the New York City experiment because of its adaptability.
The idea of using bivalves like mussels, oysters, and clams to purify waterways has been on the minds of conservationists and scientists for decades. Perhaps because of a romantic nostalgia for the lost, billion-strong oyster colonies that once girded the coasts of the eastern U.S., millions of dollars have been put into oyster restoration projects, to mixed effect. But as mussel aquaculture grows in the U.S., Canada, and elsewhere, businessmen and scientists are increasingly considering the mussel, both as a way to produce a commercial product and to explore their potential as water filterers.

Uppermost on the minds of the researchers out on the Bronx River — a joint project of NOAA and the Long Island Sound Study — was whether certain types of mussels could be used to rid coastal waters of an onerous influx of nitrogen generated from sewage, fertilizers, and other pollutants. This “nutrient loading” can prompt algal blooms, which in turn deprive coastal waters of oxygen when the algae die and decompose.

“In areas where water quality is degraded... from nutrient over-enrichment, the ribbed mussel looks like a dependable partner to help us recycle lost nutrients back into useful products,” Gary Wikfors, an aquaculture expert and chief of the biotechnology branch at NOAA’s laboratory in Milford, Connecticut, said in an e-mail.

Other researchers also are investigating the beneficial effects of raising seaweed and kelp, in conjunction with bivalves, to clean coastal waters.

In macro-ecological terms, mussels and their bivalve kin are the intestines of coastal ecosystems. Their filters remove organic particulate matter from
The effects of Hurricane Irene and other storms highlight the mussel’s hardiness.
the water column, particularly phytoplankton. Oysters were long the bivalve of choice in the U.S., but the mussel has certain advantages that are being increasingly touted. Although an individual oyster can filter much more water — an estimated 20 to 30 gallons per day — mussels grow more densely than oysters.

Carter Newell, the founder of Pemaquid Mussel Farms in Damariscotta, Maine, and who had joined us on the Bronx River raft, explained that mussels do something that oysters in their present state of depletion don’t: They work in three dimensions. Oysters once built tremendous vertical reefs, many feet high, that accrued over centuries in places like the Chesapeake Bay and Long Island Sound. But those wild reefs are mostly gone, and the time needed to rebuild them to a useful height is formidable. Meanwhile, mussel rafts, with their long tendrils of bivalves, can be immediately established in 3D, working throughout the water column at incredible densities.

“My mussel rafts are 40 feet by 40 feet,” Newell told me. “That means they can filter something like five million liters of water per hour.” Mussel rafts also provide habitat, something oyster reefs once did when they were bigger and more substantial. “I have counted 37 different species of invertebrates living among the mussels on their culture ropes,” said Newell, who has a Ph.D. in marine biology.

View gallery
Mussels

Mark S. Dixon/NOAA, NEFSC
Carter Newell retrieves a sock filled with ribbed mussels at the Bronx River site of the experiment.
Mussels are also perhaps the easiest bivalve to grow. This is due to the tremendous amount of wild mussel seed, or “spat,” that still swims in American waters. Back when wild oysters were abundant, waterways were dense with oyster spat. But following the oyster’s collapse, oyster spat is increasingly rare.

“I first got the idea to grow mussels after Hurricane Irene,” Bren Smith, owner of the Thimble Island Oyster Company in Connecticut, told me recently. “After Irene there was just this incredible abundance of mussel larvae in the water and they set everywhere. Lobstermen were complaining that their traps were full of mussels. I realized all I’d have to do was provide the structure and I could have a mussel farm.”

The effects of Irene and other storms also highlight the mussel’s inherent hardiness. “Irene completely buried my oysters and killed them,” Smith told me. “[Hurricane] Sandy did, too. The mussels — they were just hanging there on the ropes. They did fine.”

Eva Galimany, a marine biologist with the Institute of Sciences of the Sea in Barcelona and a member of the team working on the NOAA project in New York, noted the sheer abundance of saltwater mussel species (many more than oysters and distributed in intertidal zones throughout much of the world) means that mussels are adaptable to a wide range of conditions. “From my experiments, they are great survivors, barely get sick, and can cope with many types of weather issues and toxins,” she said in an interview.

And since they can cope with difficult conditions it’s hoped that mussels could make it in places like the Bronx and theoretically be harvested and ground up for fish food, assuming they did not contain large quantities of toxics.

But some scientists believe there is only so much that mussels can do. A more diverse set of organisms, they maintain, will be needed to filter out the range of pollutants found in places like New York Harbor. For more
A diverse set of organisms may be needed to filter out the range of pollutants in places like New York Harbor.
than a decade, Thierry Chopin, a marine biologist at the University of New Brunswick, has been conducting research into the related field of “integrated multi-trophic aquaculture,” or IMTA, where salmon, mussels, sea cucumbers, sea urchins, and seaweeds are all cultured together. His research in the Bay of Fundy shows that blue mussels and kelp can be cultivated and thrive thanks, in part, to the wastes produced by nearby pens of farmed Atlantic salmon.

His research has also revealed that seaweeds absorb persistent inorganic nutrients in the water column much more effectively than mussels. And unlike bivalves, which use oxygen as they filter and respire, photosynthetic seaweeds generate oxygen, making for a more oxygen-rich system — provided they are harvested before they die and decompose.

Moreover, Chopin believes seaweeds can safely remove toxic substances. “The big problem is that if mussels filter phytoplankton and organic matter they also ingest all that comes with it, and that can be elements or chemicals that reach toxic levels,” Chopin said via e-mail. “What do you do with these mussels? Dump them somewhere? Then you create a pile of toxic material somewhere else.” Better in such areas, he said, to use seaweeds, which can be processed in what he calls an “Integrated Sequential BioRefinery” (ISBR). By breaking down different elements of seaweed in an ISBR, some parts can be used, for example, in cosmetics, while separating out pollutants.

Co-culturing seaweeds with mussels is something the Connecticut mussel grower Bren Smith has caught onto, although in far cleaner waters than New York Harbor. Along with his mussels, he expects this year to grow more than 10 tons of edible kelp, which he sells along with his bivalves at his community-supported fishery.

Although marine scientists hope that operations like Smith’s could build up U.S. aquaculture potential, American growers face steep competition, primarily from Canada. Of the $108 million in mussels consumed in the
Stressing the ecological advantages of culturing mussels is one way to expand the mussel industry.
U.S. in 2012, the overwhelming majority came from Canada. Gary Wikfors of NOAA says that stressing the ecological advantages of culturing mussels is one way to expand the U.S. mussel industry.

“More and more people who cultivate shellfish for food are trying to make the public aware of the environmental benefits, the ‘ecosystem services,’ of shellfish aquaculture,” said Wikfors.

Carter Newell of Maine has used the environmental benefits of mussel aquaculture to garner support for mussel farming along the Maine coast. “Shellfish production is the economic argument for clean water,” Newell says. “If you’ve established a shellfish farming area and then some real estate development wants to come in, it’s very hard for them to get permits if they reduce the water quality, because edible shellfish require very clean water.”

Clean water is something in short supply at the mouth of the Bronx River. But as Newell and the NOAA scientists started pulling up yards of rope from underneath the experimental mussel raft, it did seem plausible that mussel culture could one day get going in New York — if not to produce edible mussels, then to grow mussels that would lend a hand in cleaning the water. Each and every mussel sock that we pulled up from beneath the raft was loaded with the ribbed mussels that had been set out the previous year. They had not only survived. They had thrived.

But most interesting of all was the experiment nature had conducted all by itself. On the human-planted raft, colonies of indigenous blue mussels had decided to set all along the ropes. It seems that now it is not only we who are considering the mussel. The mussel, in its way, is considering us.

POSTED ON 09 May 2013 IN Biodiversity Policy & Politics Pollution & Health North America 

COMMENTS


Would these native mussels be able to compete with the invasive zebra mussel?

Posted by Tim Upham on 09 May 2013


I've been growing mussels since 1980 on the Pacific coast by suspended line method. it is a well developed technology and yes Canada does lead the industry, but we have several other mussel farmers here in U.S.

Posted by roger sardina on 09 May 2013


As usual with mankind...make money where you can! What is naturally obvious is to rid the cause of the pollution. Not cause and think of what can clean it up. Get at the source and sort it. Mussel farming for human consumption should only be cultivated in clean waters. Yes it filters out toxins and pollutants but then they are simply stored within the mussel. Heavy metals and pathogens are then consumed by humans! Come on aquaculture, or is your brain already intoxicated?

Do you take a pill for a headache or solve the problem 'why do I have a headache!'
Posted by colin shepheard on 04 Feb 2014


To answer the last question, most people take a pill either because they can or won't sort the problem or they don't know how to sort the source of the problem. This is analogous to the pollution problem — remove agriculture and urban activity and the pollution goes, but to reduce pollution from a whole host of unknown sources is a huge job. I think we should be throwing everything we can at pollution and deal with both sources and downstream pollution. We can't just switch humanity off.
Posted by Andrzej on 12 May 2014


I have a question, there is some kind of mussels, which can purify freshwater lagoons, here in Guatemala tenenos two lakes are being polluted by sewage, and cyanobacteria. Espercie will exist some algae, mussels or to counter this pollution.
Posted by Mynor Corado C. on 25 Oct 2014


POST A COMMENT

Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Name 
Email address 
Comment 
 
Please type the text shown in the graphic.


paul greenbergABOUT THE AUTHOR
Paul Greenberg is the author of the James Beard Award winning New York Times bestseller Four Fish: The Future of the Last Wild Food. He is currently a fellow with The Blue Ocean Institute and the writer-in-residence at New York City’s South Street Seaport Museum. In previous articles for Yale Environment 360, he assessed the record of the U.S. Clean Water Act on its 40th anniversary and reported on a controversial proposal to explore for oil and gas in the Atlantic Canyons off the U.S. East Coast.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


Fostering Community Strategies For Saving the World's Oceans
To conservationist Ayana Elizabeth Johnson, getting coastal communities involved in plans to protect their waters is critical for protecting the planet's oceans. In an interview with Yale Environment 360, she talks about her work in one Caribbean island and how it shows how such a strategy can get results.
READ MORE

How Norway and Russia Made
A Cod Fishery Live and Thrive

The prime cod fishing grounds of North America have been depleted or wiped out by overfishing and poor management. But in Arctic waters, Norway and Russia are working cooperatively to sustain a highly productive — and profitable — cod fishery.
READ MORE

Using Ocean Robots to Unlock
Mysteries of CO2 and the Seas

Marine phytoplankton are vital in absorbing ever-increasing amounts of CO2 from the atmosphere. In a Yale Environment 360 interview, researcher Tracy Villareal explains how he is using remotely operated robots to better understand how this process mitigates climate change.
READ MORE

In Japan, Captive Breeding
May Help Save the Wild Eel

As eel populations plummet worldwide, Japanese scientists are racing to solve a major challenge for aquaculture — how to replicate the life cycle of eels in captivity and commercially produce a fish that is a prized delicacy on Asian dinner tables.
READ MORE

New Initiatives to Clean Up
The Global Aquarium Trade

An estimated 30 million fish and other creatures are caught annually to supply the home aquarium market, taking a toll on some reef ecosystems. Now conservationists are working to improve the industry by ending destructive practices and encouraging aquaculture.
READ MORE

 

MORE IN Reports


In Romania, Highway Boom Poses Looming Threat to Bears
by alastair bland
Romania, one of Europe’s poorest nations, badly needs a modern highway system. But conservationists warn that unless the movements of wildlife are accommodated, a planned boom in road construction could threaten one of the continent’s last large brown bear populations.
READ MORE

Fast-Warming Gulf of Maine
Offers Hint of Future for Oceans

by rebecca kessler
The waters off the coast of New England are warming more rapidly than almost any other ocean region on earth. Scientists are now studying the resulting ecosystem changes, and their findings could provide a glimpse of the future for many of the world’s coastal communities.
READ MORE

A Scourge for Coal Miners
Stages a Brutal Comeback

by ken ward jr.
Black lung — a debilitating disease caused by inhaling coal dust — was supposed to be wiped out by a landmark 1969 U.S. mine safety law. But a recent study shows that the worst form of the disease now affects a larger share of Appalachian coal miners than at any time since the early 1970s.
READ MORE

For Cellulosic Ethanol Makers, The Road Ahead Is Still Uphill
by erica gies
While it has environmental advantages over other forms of ethanol, cellulosic ethanol has proven difficult to produce at commercial scale. Even as new production facilities come online in the U.S., a variety of economic and market realities suggest the new fuel still has big challenges to overcome.
READ MORE

Innovations in Energy Storage Provide Boost for Renewables
by dave levitan
Because utilities can't control when the sun shines or the wind blows, it has been difficult to fully incorporate solar and wind power into the electricity grid. But new technologies designed to store the energy produced by these clean power sources could soon be changing that.
READ MORE

Albania’s Coastal Wetlands:
Killing Field for Migrating Birds

by phil mckenna
Millions of birds migrating between Africa and Europe are being illegally hunted on the Balkan Peninsula, with the most egregious poaching occurring in Albania. Conservationists and the European Commission are calling for an end to the carnage.
READ MORE

Drive to Mine the Deep Sea
Raises Concerns Over Impacts

by mike ives
Armed with new high-tech equipment, mining companies are targeting vast areas of the deep ocean for mineral extraction. But with few regulations in place, critics fear such development could threaten seabed ecosystems that scientists say are only now being fully understood.
READ MORE

Electric Power Rights of Way:
A New Frontier for Conservation

by richard conniff
Often mowed and doused with herbicides, power transmission lines have long been a bane for environmentalists. But that’s changing, as some utilities are starting to manage these areas as potentially valuable corridors for threatened wildlife.
READ MORE

With the Boom in Oil and Gas,
Pipelines Proliferate in the U.S.

by peter moskowitz
The rise of U.S. oil and gas production has spurred a dramatic expansion of the nation's pipeline infrastructure. As the lines reach into new communities and affect more property owners, concerns over the environmental impacts are growing.
READ MORE

How Norway and Russia Made
A Cod Fishery Live and Thrive

by john waldman
The prime cod fishing grounds of North America have been depleted or wiped out by overfishing and poor management. But in Arctic waters, Norway and Russia are working cooperatively to sustain a highly productive — and profitable — cod fishery.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 PHOTO GALLERY

“Peter
Photographer Peter Essick documents the swift changes wrought by global warming in Antarctica, Greenland, and other far-flung places.
View the gallery.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

OF INTEREST



Yale