17 Jul 2014: Report

Scientists Look for Causes of
Baffling Die-Off of Sea Stars

Sea stars on both coasts of North America are dying en masse from a disease that kills them in a matter of days. Researchers are looking at various pathogens that may be behind what is known as sea star wasting syndrome, but they suspect that a key contributing factor is warming ocean waters.

by eric wagner

Ben Miner picks his way over slick cobble on the shore of Bellingham Bay, in northwestern Washington. He has brought me to his study site here to show me something that has become increasingly rare on the west coast of North America: a healthy community of sea stars.

He stops now and again to point them out, clustered among the rocks or in skirts of algae. They are all Pisaster ochraceus, the ochre star, and colored a deep, hale purple. “No signs of wasting,” he says. “Yet.” At a site only a few miles from here, almost all of the sea stars are gone because of disease,
Sea star wasting syndrome
Katie Campbell/Flickr
Sea star wasting syndrome leaves sea stars looking “sick and deflated.”
and those few still alive are withered and falling apart.

As Miner would later discover, the disease would soon spread to the unaffected stretch of Bellingham Bay that he had taken me to see.

A biologist at Western Washington University, Miner is one of many scientists keeping an anxious eye on a disease that is decimating populations of sea stars — commonly known as starfish — along both the east and west coasts of North America. Called sea star wasting syndrome, it leaves sea stars looking, in Miner’s words, “sick and deflated” until they disintegrate and die. Death can come quickly; in some species, the time from beginning (with the appearance of white lesions) to end (when all that remains is the ghostly white outline of a former sea star) might be as little as 24 hours. As Miner says, “It’s like their tissues just melt away.”

Sickened stars have been found from Alaska to northern Mexico. Entire assemblages have been decimated in Seattle, Monterey Bay in California,
Similar outbreaks are not uncommon and have affected species ranging from oysters to abalone.
and Vancouver, British Columbia. On the east coast, mass die-offs have been observed from New Jersey to Maine. In all, hundreds of thousands of sea stars, if not millions, are thought to have died. “This is the largest epidemic we have ever experienced in the ocean,” says Drew Harvell, a marine epidemiologist at Cornell University who studies the ecology of wildlife disease.

Outbreaks similar to sea star wasting syndrome are not uncommon, and in recent decades have affected species ranging from oysters to abalone.

The cause of the sea star epidemic is still unknown, although scientists are narrowing their focus to a few potential suspects, including some type of pathogen. Still, a key contributing factor, they believe, might lie in the warming waters of the Pacific Ocean. In this, the deaths of the sea stars might hint at larger, more troubling questions about the overall health of oceans.

“Sea stars are clearly sentinels,” Harvell says. “Something has changed in the marine environment to lead to this unprecedented scale of an outbreak, and we’re working very hard to understand the pieces.”

But, as she and her colleagues are finding, there are a lot more knowledge gaps than there is knowledge.

Sea star wasting syndrome is not wholly unknown, with outbreaks occurring in 1978, 1982, and, most recently, in 1997. But those events, while severe, were highly localized. They were also seasonal: The syndrome would appear in the spring or summer, wreak havoc for a few months, and then seem to burn itself out when winter arrived, most likely as marine waters cooled.

The current event, on the other hand, is behaving in ways that have both alarmed and baffled scientists. Its geographic breadth is exceptional, as are the number of sea star species it affects, which is significantly greater than in the past. (More than 20 are susceptible; of those, six are highly vulnerable, with mortality all but assured once symptoms appear, according to Miner.) But there is also the curious fact that wasting syndrome seems to have moved from north to south, rather than the other way around.

“Before, we knew it was going to move from south to north, and we knew it was going to shut off in the winter,” says Peter Raimondi, the chairman of the Department of Ecology and Evolutionary Biology at the University of California-Santa Cruz. “It used to be almost orderly.” No longer — wasting
Warm water stresses marine organisms, making them more susceptible to disease.
syndrome has instead persisted through the winter, and ramped up again in the spring.

Biologists suspect this is due to seasonal increases in marine water temperatures. Warm water stresses marine organisms, making them more susceptible to disease, and wasting syndrome has taken advantage of this before. Investigating a small outbreak on Vancouver Island in 2008, Amanda Bates and her colleagues at the University of British Columbia showed that higher water temperatures facilitated the syndrome’s spread. (A graduate student of Harvell’s is studying the relationship between sea star mortality and water temperature; there appears to be a link this time, too.)

Sea stars will thus most likely face months of continued pathological assault before winter brings any possibility of relief. “There’s a prediction of a strong El Niño event developing,” Raimondi says. “If that happens, things are going to be bad.”

He worries that, with an influx of additional warm water because of El Niño wasting syndrome could take out pockets of sea stars thus far unaffected. And that may be just the beginning. “To date, no evidence suggests that the disease has jumped to other species, like sea urchins,” he says. “But during warm water events, I would not be at all surprised to see it move between species.”

All of this means it is vital to find the syndrome’s cause. “If we can understand where it came from, how it spread, what it does, then we’ll have more tools next time,” Harvell says. To do this, she and Miner are working with Ian Hewson, a biological oceanographer at Cornell University, engaging in a bit of genetic sleuthing. With samples from both sick and healthy sea stars, Hewson amplified DNA from everything present in their tissues. Then he looked for sequences unique to ill sea stars. From this, he came up with a shortlist of possible bacterial and viral agents.

“There was one particular sequence associated with sick individuals — a densovirus,” Miner says. Hewson had previously shown that densoviruses cause a disease similar to wasting in sea urchins, which are close relatives of sea stars. It was the first time a virus that affected echinoderms — the
‘We could see whole communities restructured — the effects could be significant,’ says one scientist.
phylum to which sea stars and sea urchins belong — was described.

Whatever the exact agent turns out to be — Harvell expects the results will be published within a few months — the rise of sea star wasting syndrome continues what in recent decades has become a worrisome, more general pattern: The increasing spread of marine pathogens.

In the late 1940s and 1950s, two protozoans began to infect populations of eastern oysters, beginning in the southeastern U.S. Called, respectively, Dermo disease and MSX disease, both have crept steadily north as temperatures of marine waters have risen, and now reach into Maine. Scientists say that oyster populations have developed some resistance to the disease and are growing in many regions.

More recently, a withering disease appeared in communities of black abalone in California, in 1985. First detected following a strong El Niño, the disease spread through both farmed and wild abalone populations, eventually affecting red and white abalones, as well. Both black and white abalones were listed under the Endangered Species Act, due in part to losses from withering disease. The cause turned out to be a bacteria that infected the abalone’s digestive tract. Black and white abalone populations have yet to recover. They also have been heavily overfished.

Scientists fear the same dynamics of eradication and slow recovery could play out with sea stars. “We could see whole communities restructured,”


Scientists Focus on Polar Waters
As Threat of Acidification Grows

Polar water acidification
A sophisticated and challenging experiment in Antarctica is the latest effort to study ocean acidification in the polar regions, where frigid waters are expected to feel acutely the ecological impacts of acidic conditions not seen in millions of years.
Miner says. “The ecological effects could be pretty significant.”

Sea stars are justly famous as a so-called keystone species and the focus of a groundbreaking experiment in ecology. Working on an island off the northwestern tip of Washington in 1963, Robert Paine, an ecologist at the University of Washington, removed all the ochre stars from a patch of the rocky intertidal zone. He then waited as the community responded to the abrupt absence of the sea stars, which are formidable predators.

In the end, with sea stars no longer keeping them in check, mussels dominated the site, and from this Paine conceived of the keystone species concept — the idea that a single organism can effectively shape an entire species assemblage in ways disproportionate to its own abundance.

“In a way, we’re seeing a replication of that experiment,” Miner says. “It’s not like another predator is going to come in and replace sea stars.”

For his part, Miner continues to walk the shores of Bellingham Bay. These days, though, he has much less to look at. A couple of weeks after I was with him, he returned to the site we had visited to find telltale white lesions on the arms of the ochre stars there. Soon after that, all the sea stars were dead.

POSTED ON 17 Jul 2014 IN Biodiversity Biodiversity Climate Forests Oceans Sustainability 


I dive multiple days per month in Monterey and Carmel Bays, California. I have not seen a sunflower sea star all year, I normally see multiple per dive. The numbers of spiny/knobby sea stars and other sea stars have been greatly reduced. I think as a result I am seeing far far more sea urchins than I have ever seen before (mainly small ones that are predated by sunflower stars). Also, I suspect as a result, the giant kelp beds are thinner than I have ever seen them in the summer in 37 years of diving here. I wonder if the pathogen causing sea star wasting is influenced by ocean acidification?
Posted by Charlie Schaffer on 18 Jul 2014

I recently was on the Oregon Coast at Oswald State Beach. Oswald is between Cannon Beach and Manzanita. In years past tucked between the giant green anemone were clusters of stars. This year there weren't any. Not even wasting stars.

I did see a few baby ochres and sunflowers back in June up in Seattle, but they didn't look healthy. At that time, I saw many more sea cucumbers than in years past.
Posted by Jeanne on 18 Jul 2014

I hate to be the bearer of the obvious — can the 300,000 tonnes of radioactive water leaking out of Japan daily and for years now be the impact? It's all Pacific sea life that is disheartening. Multiple countries have pegged the Pacific as 50% dead as of summer 2014 due to the radiation leakage.
Posted by Dustin on 05 Sep 2014


Comments are moderated and will be reviewed before they are posted to ensure they are on topic, relevant, and not abusive. They may be edited for length and clarity. By filling out this form, you give Yale Environment 360 permission to publish this comment.

Email address 
Please type the text shown in the graphic.

Eric Wagner is a writer who covers science and the environment and lives in Seattle with his wife and daughter. His essays and journalism have appeared in Audubon, High Country News, Orion, and Smithsonian, among other outlets.



Why Brazil’s New Pledges On
Carbon Emissions Fall Short

Brazil has won international acclaim for curbing deforestation. But Brazilian forestry expert Maria Fernanda Gebara says her country has not gone far enough in its pledges to cut carbon emissions and continues to have a dismal record on developing wind and solar power.

On Thin Ice: Big Northern Lakes
Are Being Rapidly Transformed

As temperatures rise, the world’s iconic northern lakes are undergoing major changes that include swiftly warming waters, diminished ice cover, and outbreaks of harmful algae. Now, a global consortium of scientists is trying to assess the toll.

Beyond Keystone: Why Climate
Movement Must Keep Heat On

It took a committed coalition and the increasingly harsh reality of climate change to push President Obama to reject the Keystone XL pipeline. But sustained public pressure will now be needed to force politicians to take the next critical actions on climate.

A Tale of Two Northern European Cities:
Meeting the Challenges of Sea Level Rise

For centuries, Rotterdam and Hamburg have had to contend with the threat of storm surges and floods. Now, as sea levels rise, planners are looking at innovative ways to make these cities more resilient, with new approaches that could hold lessons for vulnerable urban areas around the world.

A Tale of Two Northern European Cities:
Meeting the Challenge of Sea Level Rise

For centuries, Rotterdam and Hamburg have had to contend with the threat of storm surges and floods. Now, as sea levels rise, planners are looking at innovative ways to make these cities more resilient, with new approaches that could hold lessons for vulnerable urban areas around the world.


MORE IN Reports

For Storing Electricity, Utilities
Are Turning to Pumped Hydro

by john roach
High-tech batteries may be garnering the headlines. But utilities from Spain to China are increasingly relying on pumped storage hydroelectricity – first used in the 1890s – to overcome the intermittent nature of wind and solar power.

On Thin Ice: Big Northern Lakes
Are Being Rapidly Transformed

by cheryl katz
As temperatures rise, the world’s iconic northern lakes are undergoing major changes that include swiftly warming waters, diminished ice cover, and outbreaks of harmful algae. Now, a global consortium of scientists is trying to assess the toll.

The Haunting Legacy of
South Africa’s Gold Mines

by mark olalde
Thousands of abandoned gold mines are scattered across South Africa, polluting the water with toxics and filling the air with noxious dust. For the millions of people who live around these derelict sites, the health impacts can be severe.

The Sushi Project: Farming Fish
And Rice in California's Fields

by jacques leslie
Innovative projects in California are using flooded rice fields to rear threatened species of Pacific salmon, mimicking the rich floodplains where juvenile salmon once thrived. This technique also shows promise for growing forage fish, which are increasingly threatened in the wild.

A Delicate Balance: Protecting
Northwest’s Glass Sponge Reefs

by nicola jones
Rare and extensive reefs of glass sponges are found only one place on earth – a stretch of the Pacific Northwest coast. Now, efforts are underway to identify and protect these fragile formations before they are obliterated by fishing vessels that trawl the bottom.

As the Fracking Boom Spreads,
One Watershed Draws the Line

by bruce stutz
After spreading across Pennsylvania, fracking for natural gas has run into government bans in the Delaware River watershed. The basins of the Delaware and nearby Susquehanna River offer a sharp contrast between what happens in places that allow fracking and those that do not.

Will Tidal and Wave Energy
Ever Live Up to Their Potential?

by sophia v. schweitzer
As solar and wind power grow, another renewable energy source with vast potential — the power of tides and waves — continues to lag far behind. But progress is now being made as governments and the private sector step up efforts to bring marine energy into the mainstream.

The Rapid and Startling Decline
Of World’s Vast Boreal Forests

by jim robbins
Scientists are becoming increasingly concerned about the fate of the huge boreal forest that spans from Scandinavia to northern Canada. Unprecedented warming in the region is jeopardizing the future of a critical ecosystem that makes up nearly a third of the earth’s forest cover.

Northern Forests Emerge
As the New Global Tinderbox

by ed struzik
Rapidly rising temperatures, changes in precipitation, and increased lightning strikes are leading to ever-larger wildfires in the northern forests of Alaska, Canada, and Siberia, with potentially severe ecological consequences.

For U.S. Tribes, a Movement to
Revive Native Foods and Lands

by cheryl katz
On ancestral lands, the Fond du Lac band in Minnesota is planting wild rice and restoring wetlands damaged by dams, industry, and logging. Their efforts are part of a growing trend by Native Americans to bring back traditional food sources and heal scarred landscapes.

e360 digest
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies


Donate to Yale Environment 360
Yale Environment 360 Newsletter



About e360
Submission Guidelines

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


e360 Digest
Video Reports


Business & Innovation
Policy & Politics
Pollution & Health
Science & Technology


Antarctica and the Arctic
Central & South America
Middle East
North America

e360 VIDEO

The 2015 Yale e360 Video Contest winner documents a Northeastern town's bitter battle over a wind farm.
Watch the video.


The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

A 2015 Yale e360 Video Contest winner captures stunning images of wild salmon runs in Alaska.
Watch the video.

e360 VIDEO

Colorado wildfires
An e360 video goes onto the front lines with Colorado firefighters confronting deadly blazes fueled by a hotter, drier climate.
Watch the video.


A three-part series Tainted Harvest looks at the soil pollution crisis in China, the threat it poses to the food supply, and the complexity of any cleanup.
Read the series.

header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.