15 Oct 2009: Report

The Spread of New Diseases:
The Climate Connection

As humans increasingly encroach on forested lands and as temperatures rise, the transmission of disease from animals and insects to people is growing. Now a new field, known as “conservation medicine,” is exploring how ecosystem disturbance and changing interactions between wildlife and humans can lead to the spread of new pathogens.

by sonia shah

Look up into the tree canopy of the urban tropics in South Asia, Australia, or equatorial Africa and as often as not you will find masses of Pteropos fruit bats, hanging from the branches like so many furry stalactites. Their forests cut down by bulldozers, torched by slash-and-burn farmers, or desiccated from a disrupted climate, fruit bats increasingly intrude upon human communities, adapting to the orchards and cultivated fruit trees of the cities, farms, and suburbs that have subsumed their forests.

With those bats come diseases that spread to humans, and a growing body of research suggests that their microbes — as well as other pathogens that jump from animals to people — are spreading more rapidly because of climate change and deforestation.

The ongoing deforestation of African rainforests, for example, has increased such encounters, by bringing humans closer to infected bats. Roughly 4 percent of Congo basin rainforests were lost during the 1990s alone. With habitat loss devastating many animal species hunted for game meat, impoverished villagers have stepped up their predation on survivor species such as fruit bats.

Fruit Bats
The dislocation of fruit bats because of deforestation has increased encounters between humans and the bats — and the pathogens they carry.
In Congo in 2007, for example, local hunters slaughtered thousands of fruit bats with their shotguns, and villages were “literally inundated” with blood-bathed bat corpses, according to scientists. As a result, 260 people became infected with the deadly Ebola virus, which scientists believe had lived quietly in the bats and then was transmitted to the villagers exposed to the bats’ blood and other fluids. A total of 186 people perished. Scientists in Gabon and Congo have traced that Ebola outbreak to a massive migration of fruit bats into the stricken villages just prior to the epidemic.

“When you disrupt the balance, you are precipitating the spillover of pathogens from wildlife to livestock or humans,” says the Wildlife Trust’s veterinary epidemiologist and public health expert, Jonathan Epstein.

Other bat-related outbreaks of deadly diseases in humans have occurred in recent years in Malaysia and Bangladesh, sometimes because of changes in weather patterns or in land use as human settlements and agriculture increasingly encroach upon forested areas. And there is growing evidence that rising temperatures and unusual rainfall patterns have already expanded the risk of diseases carried by insects, a phenomenon that is expected to worsen as the world continues to warm this century and insects shift their ranges to higher latitudes and elevations.

These developments have given rise to a growing consensus among many wildlife biologists and public health experts who advocate a new approach to conservation and public health called “conservation medicine,” which promotes interdisciplinary collaborations to expose the links between ecosystems, the health of wildlife, and humans that lead to the emergence of new pathogens.

In recent years, for instance, scientists have been ferreting out the connections between climate change and human health. They’ve found that spasms of cholera correlate with changing sea surface temperatures and that diarrhea outbreaks arrive as the mercury climbs. They’ve discovered associations between seasonal weather patterns and malaria that are so strong that outbreaks can be predicted with the weather forecast.

The so-called meningitis belt in West Africa has expanded in recent years, thanks to land-use and climate changes, the Intergovernmental Panel on
The pace of pathogens jumping from animals into humans has quickened, experts say.
Climate Change (IPCC) notes. Malaria has newly established itself in the East African highlands as the region warms. The destruction of thousands of acres of Peruvian rainforest has created new mosquito habitat and unleashed more than 120,000 cases of malaria in the late 1990s, Stanford University’s Amy Vittor and colleagues have found, compared to fewer than 150 a year in the early 1990s.

And future climate change could intensify the burden of these diseases in some places, allowing still others to annex new territory. According to the IPCC’s 2007 assessment, a 2- to 5-degree F increase in the average global temperature could lead by 2100 to longer seasons of malaria transmission in Africa and a 5 to 7 percent extension of the disease into higher latitudes. Coupled with projected population growth, the changing climate could nearly double the number of people at risk of infection from dengue fever by 2080.

Humans have been acquiring microbial pathogens from animals and insects for millennia, from the measles we got from goats to the malaria bestowed upon us by mosquitoes. But in the past six decades, the pace of pathogens jumping from animals into humans — collectively dubbed “zoonoses” — has quickened, experts say.

The transmission of the filovirus Ebola from bats to humans illustrates the complexity of the spread of these diseases and its relation to climate change and land disturbance. Simple bat-human contact isn’t sufficient for the filovirus Ebola to erupt.

“It’s a cascade of events” that bring bats, apes, and humans together in unusual ways, aggravated in part by “unique climatic conditions,” says World Health Organization zoonoses expert Pierre Formenty. According to a NASA analysis of meteorologic satellite data, Ebola
The destruction of Peruvian rainforest has created new mosquito habitat and unleashed more than 120,000 cases of malaria.
outbreaks correlate with heavy rains at the end of a period of intense aridity. Extremely dry conditions force some fruit trees to defer fruiting. When the rains come and the stricken trees put out fruit, all manner of fruit-starved species, including Pteropus bats and apes, gather to feast. Large numbers of creatures concentrated under newly fruit-heavy trees provide microbes such as Ebola a prime opportunity to jump from one species to another. And once Ebola starts circulating heavily in a new species such as apes or bats, it can readily be transmitted through infected blood and other fluids to humans.

Whether the warming planet will aggravate the unusual rainfall patterns that set the scene for Ebola outbreaks remains unclear. While experts in conservation medicine have made great strides delineating the links between climate and disease, projections about how disease patterns will shift as the climate changes are still nascent. Worryingly, however, a trend toward aridity has already been noted across African rainforests.

Abnormal patterns of human-bat contact, aggravated by intensified agriculture, led to the emergence of the lethal Nipah virus in Malaysia. The
There’s much we can do to diminish the burden of a disrupted disease landscape, with prompt treatment and well-planned prevention.
virus, which scientists isolated inside fruit bats, first erupted at an industrial-scale pig farm in 1998. Scientists suspect that the bats fed on the cultivated fruit trees overhanging the pigs’ troughs, contaminating the pigs with virus-infected feces, urine, and saliva. The pigs fell ill first, their huge numbers rapidly amplifying the virus and enabling it to jump to the local farmers. Forty percent died of acute encephalitis within a matter of weeks. Nipah virus has also emerged in South Asia and now erupts in Bangladesh nearly every year, killing 70 percent of the afflicted. By 2007, 123 people had been felled.

And it’s not just bats. In the United States, environmental disruptions have allowed microbes from rodents and birds to find their way into humans, too. During the late 1990s, two novel diseases emerged in the United States: hantavirus and West Nile virus. Scientists suspect the arrival of the new scourges are the result of the changing climate, and, indeed, so far both diseases have been linked to weather patterns that are expected to intensify as the world warms. Concern is high that more such novel diseases may emerge as the climate continues to change.

A never-before-seen hantavirus struck the southwestern United States in the early 1990s, after an El-Nino-associated cycle of early season heavy

More from Yale e360

What’s Killing
the Tasmanian Devil?

Scientists have been trying to identify the cause of a cancer epidemic that is wiping out Australia’s Tasmanian devils. Now new research points to an alarming conclusion: because of the species’ low genetic diversity, the cancer is contagious and is spreading from one devil to another.

With the Clearing of Forests,
Baby Orangutans Marooned

As Borneo’s rain forests are razed for oil palm plantations, wildlife centers are taking in more and more orphaned orangutans and preparing them for reintroduction into the wild. But the endangered primates now face a new threat — there is not enough habitat where they can be returned.
rains ended a six-year-long drought. According to Paul Epstein of Harvard Medical School’s Center for Health and the Global Environment, the drought had reportedly winnowed the ranks of owls, snakes, and coyotes while the rains fattened supplies of pine nuts and grasshoppers, both of which allowed the local deer mice population to explode ten-fold. Deer mice overran local communities, and hantavirus, which may have been living quietly inside rodent populations for years, exited through their feces and into the dry air and the airways of the people. The scourge broke out again in 1998, following a 1997 El Nino event. As with Nipah virus, hantavirus now regularly plagues the southwestern United States. Hantavirus pulmonary syndrome kills 37 percent of its victims; by 2007, 165 had died.

West Nile virus, transmitted by mosquitoes from birds to humans, first emerged on American soil in 1999 and its arrival similarly has a “very strong climate trigger,” Harvard’s Epstein says. According to a recent report by scientists from New York University and Harvard, cases of West Nile virus between 2001 and 2005 increased by 50 percent with every 9-degree F rise in the mean maximum weekly temperature, and 33 percent after heavy rains. Warmth and heavy rain tend to lead to an abundance of the Culex mosquitoes that transmit the microbe.

Between 1999 and 2007, the Centers for Disease Control logged over 27,000 cases of West Nile virus infection, some 8 to 10 percent of which end in death. With the correlation between climate and West Nile virus already evident, researchers speculate that the warmer temperatures and heavier downpours that climate change models predict will likely increase the burden of West Nile virus in coming years.

Human health, of course, is a complex beast. Much of the impact of these changes will depend upon factors other than the climate: our own population growth, our immune systems, and the care with which we craft our health systems and distribute medical goods. There’s much we can do to diminish the burden of a disrupted disease landscape, with prompt treatment and well-planned prevention. The burden of some diseases may even decline.

But no sophisticated diagnostic method nor high-tech medical care can save us from new pathogens, which by definition cause indeterminate illness of uncertain origins. This fall, the Institute of Medicine called for greater political commitment and funding for global surveillance of emerging zoonoses.

The trouble is, of the estimated one million unique viruses carried by vertebrate species — and thus potential zoonotic threats — a mere 2,000 have been described. Surveillance of wildlife health, which could provide early warning of zoonotic pathogens on the move, is minimal, particularly in those parts of the world where contact between wild species and people are most intimate.

Fortunately, most of the time, microbial forays into new species are either benign or unsuccessful, extinguished by the new host’s immune responses or by the microbe’s own failure to thrive. “Only a tiny fraction are going to become human pathogens,” says Centers for Disease Control medical ecologist James Mills. And even with new zoonotic pathogens cropping up with increasing frequency, the actual number of deaths from the diseases they cause is still miniscule, compared to old killers such as malaria.

But the potential risks of new pathogens adapting to the human body are indisputable. And it only takes one. After all, not many people died when a lentivirus of Cameroonian chimps first jumped into humans sometime in the 1930s, even as it carved a foothold in the rapidly growing colonial African city of Leopoldville. But then it evolved into a form that efficiently preyed upon humankind. Between 1981 and 2007, 55 million souls were infected, and to date the disease it causes — AIDS — has killed more than 25 million.

POSTED ON 15 Oct 2009 IN Biodiversity Climate Climate Forests Policy & Politics Africa Asia Europe North America 

COMMENTS


This is all not only about connections with climate change but also about how human 'tinkering' at the genes levels leads to often unanticipated and dangerous results.


Posted by Jaya on 16 Oct 2009


Have we read the same article? This article focuses solely on the climate connection, and has nothing to do with 'tinkering at the genes levels'.
Posted by Dan on 20 Oct 2009


This concerns how human encroachment into animal habitat causes human diseases. It also makes me think how much sensitivity to animal health is relative to the well-being of humans. Like the canary in the coal mine, but applied everywhere.

Posted by TRB on 24 Oct 2009


Excellent article, and actually scientifically accurate, as the author never once states that co2 induce global warming is the cause of any of these zoonoses. "Researchers speculate that" and "climate models predict that.." is as far as she is willing to go.
Posted by ianh on 27 Oct 2009


Disease transmitting from southen countries to the northen countries is associated with rising temperatures on planet.

There is growing evidence that ongoing deforestation, rising temperatures and unusual rainfall patterns have already expanded the risk of diseases being transmitted from animals and insects to humans.

Scientists say that rising water temperatures are also partly to blame for new threats to the fauna.

Posted by ann on 07 Jan 2010


Comments have been closed on this feature.
sonia shahABOUT THE AUTHOR
Sonia Shah is an author and science journalist whose writing has appeared in The Nation, New Scientist, The Washington Post and elsewhere. Her third book, The Fever: How Malaria Ruled Humankind for 500,000 Years, will be published in 2010.
MORE BY THIS AUTHOR

 
 

RELATED ARTICLES


UN Panel Looks to Renewables
As the Key to Stabilizing Climate

In its latest report, the UN's Intergovernmental Panel on Climate Change makes a strong case for a sharp increase in low-carbon energy production, especially solar and wind, and provides hope that this transformation can occur in time to hold off the worst impacts of global warming.
READ MORE

New Satellite Boosts Research
On Global Rainfall and Climate

Although it may seem simple, measuring rainfall worldwide has proven to be a difficult job for scientists. But a recently launched satellite is set to change that, providing data that could help in understanding whether global rainfall really is increasing as the planet warms.
READ MORE

Scientists Focus on Polar Waters
As Threat of Acidification Grows

A sophisticated and challenging experiment in Antarctica is the latest effort to study ocean acidification in the polar regions, where frigid waters are expected to feel most acutely the ecological impacts of acidic conditions not seen in millions of years.
READ MORE

UN Climate Report Is Cautious
On Making Specific Predictions

The draft of the latest report from the Intergovernmental Panel on Climate Change warns that the world faces serious risks from warming and that the poor are especially vulnerable. But it avoids the kinds of specific forecasts that have sparked controversy in the past.
READ MORE

Should Universities Divest
From Fossil Fuel Companies?

Student and activist groups have been urging universities to take a stand against climate change by divesting from companies that produce oil, natural gas, or coal. In a Yale Environment 360 debate, activist Bob Massie makes the case for divestment as a necessary tool in pushing for action on climate, while economist Robert Stavins argues it would be merely symbolic and have little effect.
READ MORE

 

MORE IN Reports


A Public Relations Drive to
Stop Illegal Rhino Horn Trade

by mike ives
Conservation groups are mounting campaigns to persuade Vietnamese consumers that buying rhino horn is decidedly uncool. But such efforts are likely to succeed only as part of a broader initiative to crack down on an illicit trade that is decimating African rhino populations.
READ MORE

On Fracking Front, A Push
To Reduce Leaks of Methane

by roger real drouin
Scientists, engineers, and government regulators are increasingly turning their attention to solving one of the chief environmental problems associated with fracking for natural gas and oil – significant leaks of methane, a potent greenhouse gas.
READ MORE

Scientists Focus on Polar Waters
As Threat of Acidification Grows

by jo chandler
A sophisticated and challenging experiment in Antarctica is the latest effort to study ocean acidification in the polar regions, where frigid waters are expected to feel most acutely the ecological impacts of acidic conditions not seen in millions of years.
READ MORE

On Ravaged Tar Sands Lands,
Big Challenges for Reclamation

by ed struzik
The mining of Canada’s tar sands has destroyed large areas of sensitive wetlands in Alberta. Oil sands companies have vowed to reclaim this land, but little restoration has occurred so far and many scientists say it is virtually impossible to rebuild these complex ecosystems.
READ MORE

A New Leaf in the Rainforest:
Longtime Villain Vows Reform

by rhett butler
Few companies have done as much damage to the world’s tropical forests as Asia Pulp & Paper. But under intense pressure from its customers and conservation groups, APP has embarked on a series of changes that could significantly reduce deforestation in Indonesia and serve as a model for forestry reform.
READ MORE

In a Host of Small Sources,
Scientists See Energy Windfall

by cheryl katz
The emerging field of “energy scavenging” is drawing on a wide array of untapped energy sources­ — including radio waves, vibrations created by moving objects, and waste heat from computers or car exhaust systems — to generate electricity and boost efficiency.
READ MORE

Life on Mekong Faces Threats
As Major Dams Begin to Rise

by joshua zaffos
With a massive dam under construction in Laos and other dams on the way, the Mekong River is facing a wave of hydroelectric projects that could profoundly alter the river’s ecology and disrupt the food supplies of millions of people in Southeast Asia.
READ MORE

As Fracking Booms, Growing
Concerns About Wastewater

by roger real drouin
With hydraulic fracturing for oil and gas continuing to proliferate across the U.S., scientists and environmental activists are raising questions about whether millions of gallons of contaminated drilling fluids could be threatening water supplies and human health.
READ MORE

In Developing World, A Push to
Bring E-Waste Out of Shadows

by mike ives
For decades, hazardous electronic waste from around the world has been processed in unsafe backyard recycling operations in Asia and Africa. Now, a small but growing movement is seeking to provide these informal collectors with incentives to sell e-waste to advanced recycling facilities.
READ MORE

Growing Insects: Farmers Can
Help to Bring Back Pollinators

by richard conniff
With a sharp decline in pollinating insects, farmers are being encouraged to grow flowering plants that can support these important insects. It’s a fledgling movement that could help restore the pollinators that are essential for world food production.
READ MORE


e360 digest
Yale
Yale Environment 360 is
a publication of the
Yale School of Forestry
& Environmental Studies
.

SEARCH e360



Donate to Yale Environment 360
Yale Environment 360 Newsletter

CONNECT

Twitter: YaleE360
e360 on Facebook
Donate to e360
View mobile site
Bookmark
Share e360
Subscribe to our newsletter
Subscribe to our feed:
rss


ABOUT

About e360
Contact
Submission Guidelines
Reprints

E360 en Español

Universia partnership
Yale Environment 360 articles are now available in Spanish and Portuguese on Universia, the online educational network.
Visit the site.


DEPARTMENTS

Opinion
Reports
Analysis
Interviews
Forums
e360 Digest
Podcasts
Video Reports

TOPICS

Biodiversity
Business & Innovation
Climate
Energy
Forests
Oceans
Policy & Politics
Pollution & Health
Science & Technology
Sustainability
Urbanization
Water

REGIONS

Antarctica and the Arctic
Africa
Asia
Australia
Central & South America
Europe
Middle East
North America

e360 PHOTO GALLERY

“Peter
Photographer Peter Essick documents the swift changes wrought by global warming in Antarctica, Greenland, and other far-flung places.
View the gallery.

e360 MOBILE

Mobile
The latest
from Yale
Environment 360
is now available for mobile devices at e360.yale.edu/mobile.

e360 VIDEO

Warriors of Qiugang
The Warriors of Qiugang, a Yale Environment 360 video that chronicles the story of a Chinese village’s fight against a polluting chemical plant, was nominated for a 2011 Academy Award for Best Documentary (Short Subject). Watch the video.


header image
Top Image: aerial view of Iceland. © Google & TerraMetrics.

e360 VIDEO

Colorado River Video
In a Yale Environment 360 video, photographer Pete McBride documents how increasing water demands have transformed the Colorado River, the lifeblood of the arid Southwest. Watch the video.

 

OF INTEREST



Yale