Scientists at the Massachusetts Institute of Technology (MIT) say that replacing flat solar panels with three-dimensional structures could make photovoltaic systems as much as 20 times more effective. In a series of tests, the researchers found that such 3D structures are able to pick up light even when the sun is at lower angles, and that internal reflections within the 3D panels help increase the amount of captured light. The structures also can double the number of peak hours of generation. Scientists say even a simple cube shape, open at the top and covered with photovoltaic cells, could produce 3.8 times more power than a flat panel covering the same area. (By comparison, costly solar-tracking mount technology — which moves photovoltaic panels to follow the path of the sun — generates only 1.8 times more energy). While the more complex structures would be more expensive than typical flat panels, researcher Marco Bernardi says the extra power would compensate for the cost difference.
MIT Study Shows Large Potential of 3D Solar Energy Generation
More From E360
-
Food & Agriculture
How Herbicide Drift from Farms Is Harming Trees in Midwest
-
Policy
U.S. Aid Cuts Are Hitting Global Conservation Projects Hard
-
INTERVIEW
How a Former Herder Protected Mongolia’s Vast Grasslands
-
Solutions
A.I. Is Quietly Powering a Revolution in Weather Prediction
-
RIVERS
On a Dammed River, Amazon Villagers Fight to Restore the Flow
-
Biodiversity
With the Great Mussel Die-Off, Scientists Scramble for Answers
-
ANALYSIS
Recycling Nuclear Waste: A Win-Win or a Dangerous Gamble?
-
CONFLICT
In War-Torn Sudan, a Gold Mining Boom Takes a Human Toll
-
Opinion
With NOAA Cuts, a Proud Legacy and Vital Science Are at Risk
-
Biodiversity
Imperiled in the Wild, Many Plants May Survive Only in Gardens
-
Climate
Can Toxic Mining Waste Help Remove CO2 from the Atmosphere?
-
INTERVIEW
Saving U.S. Climate and Environmental Data Before It Goes Away